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ABSTRACT
Rank fusion is a powerful technique that merges multiple system
runs to produce a single top-k list that o�en has much higher
e�ectiveness than any single system can produce. Recently, there
has been renewed interest in rank fusion in the IR community as
these techniques can also be combined with query variations to
produce highly e�ective runs. In this work, we comprehensively
evaluate several state-of-the-art fusion algorithms in the context
of risk. Like many re-ranking algorithms, there is a risk-reward
trade-o� in rank fusion, where improving the retrieval e�ectiveness
for most queries o�en comes at the expense of others. Since system
performance is usually compared using only aggregate scores for
an evaluation metric, the risk is potentially obscured. In this work,
we explore the use of the risk-based evaluation metrics over deep
and shallow evaluation goals, and show that the risk-reward payo�
in keyword queries can in fact be signi�cantly improved when
careful combinations of system and query variations are fused into
a single run.

1 INTRODUCTION
Unsupervised rank fusion, the process of combining knowledge
from many Information Retrieval outputs into one coalesced set,
is a classic approach used in Information Retrieval to improve
the utility of results displayed to users. �is can be accomplished
by combining the outputs from multiple systems [15] or multiple
expressions of a single information need (query variations) [5]. �e
generation of this set can be varied by the fusion method(s) utilized,
systems used, the topics used, or all of the above. �ese techniques
have been a mainstay in IR research, but have fallen out of favor in
recent years as search engines move to more complex Learning-to-
Rank (LtR) Models. However, as search engines become more reliant
on stage-wise retrieval, combining rank fusion and LtR models in
interesting new ways is likely to reap additional improvements in
overall system performance.

In this work, we revisit rank fusion in the context of risk-sensitive
evaluation. Risk occurs when a new system underperforms when
compared to a simpler baseline model for a given query. Users are
very sensitive to signi�cant failures in a search session, which can
result in a user mistrusting a system and even stop using it [30].
�is issue is o�en ignored in IR evaluation exercises as measuring
system performance using aggregate scores does not penalize a
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new system for signi�cant failures on a small subset of topics as
long as overall performance improves. In this work, we focus on
two related research questions:
Research�estion (RQ1): How susceptible are system-based and
query-based rank fusion methods to query performance degradation?
Research�estion (RQ2): How can system-based and query-based
fusion methods be combined to achieve the best risk-reward trade-
o�s?

2 BACKGROUND AND RELATEDWORK
Rank Fusion. Rank fusion is a technique used to more e�ectively
resolve a users information need, by combining knowledge from
the output of more than one system [15] or query variation [5].
�ere is a duality between rank fusion and learning-to-rank, as
each technique a�empts to optimize the ordering of a ranked list by
observing one or more features, and each technique can be trained
in a supervised or unsupervised machine learning scenario. In this
work we focus strictly on unsupervised rank fusion methods, which
are summarized in Table 1.

Fox and Shaw [15] published seminal work on unsupervised rank
fusion, describing six methods belonging to the “Comb” family. �e
retrieval scores of �ve di�erent IR systems were merged, with an
observed improvement in the precision and recall of the result sets.
Of this family of algorithms, the most e�ective methods of combin-
ing evidence from the di�erent systems used were CombSUM and
CombMNZ. CombMNZ is similar to CombSUM’s aggregation of
retrieval score across di�erent lists, however this score is further
multiplied by the number of times the document has appeared in
all lists. Ng and Kantor [28] performed a regression analysis to
determine if improved performance by utilizing CombSUM could
be predicted by observing the output dissimilarity between lists and
a pairwise measure of the performance between systems [27]. Wu
and McClean [33] improved on this work, primarily by observing
that the number of overlapping documents present in each list can
act as a feature to accurately predict improved performance using
CombSUM and CombMNZ.

Rank fusion algorithms can broadly be classi�ed into two cate-
gories [16]. Score-based rank fusion algorithms, such as CombSUM
and CombMNZ, depend on information learned from the retrieval
scores. Rank-based rank fusion algorithms simply rely on the order
of documents in each observed result list. In a rank-based fusion
scenario, voting algorithms used for establishing democratically
elected candidates have been abstracted to re-rank documents. �e
Borda count method, which was initially developed to determine
the winner of elections in 1784 has been successfully used in several
IR contexts (analogous to Borda-fuse) [12, 34]. Condorcet voting
was developed a year later in response to the Borda count method,
and o�ered an alternative method of preferential voting that biases
candidates ranking highly across all lists [34]. It was Condorcet’s
view that the candidate with the highest pairwise ranking among all



Table 1: A survey of rank fusion methods implemented and observed in our study. All bars in the table refer to the cardinality of the set.

Name Author Function Description

CombSUM Fox and Shaw [15]
∑
d ∈D

S (d ) Score-based — Adds the retrieval scores of documents contained
in more than one list and rearranges the order.

CombMNZ Fox and Shaw [15] |d ∈ D | ·
∑
d ∈D

S (d )
Score-based — Adds the retrieval scores of documents contained
in more than one list, and multiplies their sum by the number
of lists where the document occurs.

Borda de Borda [12] n − r (d ) + 1
n

Rank-based — Voting algorithm that sums the di�erence in rank
position from the total number of document candidates in each
list.

RRF Cormack et al. [10]
∑
d ∈D

1
k + r (d )

Rank-based — discounts the weight of documents occurring
deep in retrieved lists using a reciprocal distribution. �e pa-
rameter k is typically set to 60.

ISR Mourao et al. [26] |d ∈ D | ·
∑
d ∈D

1
r (d )2

Rank-based — inspired by RRF, but discounts documents occur-
ring lower in the ranking more severely.

logISR Mourao et al. [26] log( |d ∈ D |) ·
∑
d ∈D

1
r (d )2

Similar to ISR but with logarithmic document frequency nor-
malization.

RBC Bailey et al. [3]
∑
d ∈D

(1 − ϕ)ϕr (d )−1 Rank-based — discounts the weights of documents following a
geometric distribution, inspired by the RBP evaluation metric.
[24]

votes (the “Condorcet winner”) would re�ect the view of society’s
best candidate. To generalize Condorcet voting to a rank-fusion sce-
nario, an ordered result list can be formed by iteratively �nding and
removing the “Condorcet winner” and appending it to the tail of
the �nal result list to be supplied to the user. Unfortunately, fusion
using Condorcet’s voting scheme is an intractable problem when
fusing multiple lists [4], with the best performing implementation
having a time complexity of O (nk log2 n), where n represents the
number of lists, and k represents the number of documents [25].
Cormack et al. [10] found that fusion by summing and sorting the
reciprocal rank, for a document over each list, outperforms Con-
dorcet fusion in e�ectiveness; naming the method Reciprocal Rank
Fusion (RRF). �is unsupervised fusion method has been regarded
as a strong baseline in recent work against supervised rank-fusion
methods [18].

RRF was extended by Mourao et al. [26] to increase the growth
rate of the denominator in the reciprocal rank summation to behave
quadratically; named Inverse Square Rank (ISR). �e authors also
experimented with multiplying the summation by the logarithm of
the document frequency in a method similar to CombMNZ, naming
the method logISR. �e conclusion reached in their experimentation
is that ISR appears to outperform RRF for AP, BPref, P@10 and
P@30 using textual data from the 2013 ImageCLEF case-based
retrieval task. However, RRF outperformed ISR over all of these
metrics for the ImageCLEF medical image retrieval collection, as
document frequency was observed to be less important in this
collection.

Bailey et al. [3] drew inspiration from the Borda-fuse method,
altering the approach to aggressively discount documents ranked
deeper in runs by means of a user-model, which they refer to as
Rank Biased Centroids (RBC). �e method performs remarkably
well in a variety of di�erent scenarios, and of particular interest to
us, query variation fusion. �e gain function can be tuned to re�ect

the intrinsic distribution of relevant documents in the collection,
retrieval function, query quality and type, and judgment pool depth.
�e authors showed that fusing query variations using RBC over
the ClueWeb12B corpus produced results that signi�cantly out-
performed Borda-fuse and CombMNZ when using AP and NDCG
evaluation metrics [2]. Note that RRF, which was previously shown
to outperform CombMNZ in the TREC 5, 9 and Robust 2004 collec-
tions [10], also uses a similar discounting approach. RBC and RRF
were not directly compared by Bailey et al. [2], but are compared
in this work.
Risk Sensitive Evaluation. �e canonical risk-sensitive evalua-
tion measure is URisk for risk-sensitive retrieval, which was used for
risk-sensitive evaluation in the TREC Web tracks in 2013-14 [8, 9].
URisk takes the sum of the wins minus the sum of losses, where an
α value linearly scales the size of the losses to entertain di�erent
scenarios, e.g. α = 1 the losses will be increased twofold, α = 5,
sixfold, etc. However, a drawback of the URisk model is that the
scores it returns may obfuscate the risk, and it is not clear how to
interpret them. URisk scores are simple to compute:

URiskα =
1
|Q |

[∑
Win − (1 + α ) ·

∑
Loss

]
(1)

URisk is a tool that can be used for descriptive risk-analysis. In
conjunction with this method of communicating risk, Dinçer et al.
[14] recently proposed a new risk-sensitive retrieval evaluation
measure called TRisk, that generalizes the URisk measure to allow for
inferential risk analysis. �is works by transforming URisk scores
for a selected α value to follow a Student t-distribution. Any given
TRisk score is then provided as a function of the URisk score and the
sample error, where values reported above 2 represent no risk (with
statistical signi�cance) compared to a baseline, and conversely a
value below −2 indicates a statistically signi�cant risk. In more



recent work, Dinçer et al. [13] have proposed several other risk-
sensitive measures such as ZRisk, which allows multiple systems
to be compared simultaneously, and GeoRisk which is similar in
spirit to GMAP [29] in that it a�empts to reward improvements on
hard topics more than easy ones. However, neither of these are
inferential, and so we limit our work to TRisk.

3 EXPERIMENTAL SETUP
All runs are produced using Indri 5.11 with Krovetz stemming. For
evaluation, trec eval is used to compute AP, and gdeval was
used to compute NDCG@10. AP was used for the Robust04 collec-
tion and NDCG@10 was used on the ClueWeb12 collection, which
is consistent with judgment depth in these two collections [21, 22].
�roughout the paper, † represents signi�cance with p < 0.05, and
‡ represents signi�cance with p < 0.001 when using a two-tailed
t-test.
Document Collections. In our study, we observe the impact of fu-
sion over two popular TREC collections, Robust04 and ClueWeb12B.
As our query variation collections are restricted to a range of top-
ics, our selection of corpora must have a relevance assessment set
for these queries in order to evaluate our approach. �e Robust04
collection [31] was shown to be the most popular test collection
utilized in 2009, in a survey of a decade of Information Retrieval
publications [1]. ClueWeb12 is the most recent web collection to
be studied in the TREC Web tracks of 2013-14 [8, 9].
System Con�gurations. For both document collections our ref-
erence baseline for risk-reward analysis is BM25 with k1 = 0.9 and
b = 0.4. �e intuition for this selection is derived from its capacity
to e�ectively retrieve documents across many document collec-
tions, independent of their makeup. We expand on this reasoning
with an exploration of the inherent risks “more e�ective” retrieval
models (having a larger mean e�ectiveness score), can bring to a
BM25 baseline. For brevity in our study, we only focus on meth-
ods that show an improvement in e�ectiveness and risk-sensitivity.
We were unable to parameterize pseudo-relevance feedback for
ClueWeb12B in a way that enabled it to behave in a risk-sensitive
manner, but this is almost certainly an interesting area of future
exploration [35]. For web queries, we use a �eld-based sequential
dependency model, SDM+Fields, which we have found to work well
in practice [17]. For the query red dragon name, the Indri query
language representation appears as follows:

#weight(

α1 #combine(red.title dragon.title name.title)

α2 #combine(red.inlink dragon.inlink name.inlink)

α3 #combine(red.body dragon.body name.body)

β1 #combine(#1(red.body dragon.body)

#1(dragon.body name.body))

β2 #combine(#uw8(red.body dragon.body)

#uw8(dragon.body name.body))

)

�e query terms are searched for in titles, anchor text and
in the body of documents. �e α parameters adjust the weight-
ings of searching over each respective �eld, and β adjusts the
weightings for the di�erent SDM components. We used the values
α = (0.2,0.05,0.75) and β = (0.1,0.2) in our study.

For the Robust04 document collection, we use pseudo-relevance
feedback with the following parameterization: an assumption that
the top 10 documents will contain relevant terms to add to the
query (Rd = 10), adding 50 terms to the original query (Rt = 50)
and weighting these additional terms at 60% of the weighting of the
original query (Rw = 0.6), consistent with the recommendations
from Metzler [23] for this collection. We also use a full-dependency
model (FDM), both with and without pseudo-relevance feedback.
�is combination represents a strong baseline on the original title-
queries for Robust04.
�ery Variation Collections. �e query variation collections we
use in query fusion scenarios are from the UQV100 test collection
[2], for experimentation over the ClueWeb12B document collection.
A new query variation collection was created for the TREC Core
2017 track, and was also utilized for cross-examination of query fu-
sion methods on the Robust04 collection. �e creation of the TREC
Core 2017 queries was undertaken with the goal of reproducing the
UQV100 test collection for Newswire data. Table 2 summarizes the
statistics for both of these collections. As the UQV100 collection
has a considerable number of duplicate queries, when �ltering out
duplicates there are 5,764 queries remaining. �e TREC Core 2017
set had no duplicates, due to fewer users in the study, and so �lter-
ing was not required. A�er spelling normalization using the Bing
API, and removal of query variations with 15 or more terms, the
true count of query variations utilized in the UQV100 set is 5,243,
and 3,001 from the TREC Core 2017 set.

Table 2: Summary Statistics of the �ery Variation Collections
Studied.

Collection Topics Submissions Users
TREC Core 2017 250 3,152 8
UQV100 100 10,835 263

�e UQV100 test collection’s topics were derived from the 100
topics that were used in the TREC Web tracks in 2013-14. Additional
details on the collection can be found in the original collection de-
scription [2]. Note that the Robust04 document collection contains
topics with a single facet. Along with the title queries, an unam-
biguous back-story is supplied for each topic, detailing in advance
what assessors will mark as a relevant document. When evaluating
the retrieval e�ectiveness of the Robust04 queries we use the AP
evaluation measure, consistent with that which was used in the
original Robust04 track.
Rank Fusion. We do not engage in any parameter tuning in our
study, and only utilize parameters that were explicitly mentioned
in their respective papers. For the RRF method, we �x the constant
k = 60 for all experimental analysis. All RBC fusion results are
observed within the scope of those mentioned in the original paper:
ϕ = (0.90,0.95,0.98,0.99). Other values of ϕ were tested, but the
results are consistent with the ones presented in the following
sections. A fusion depth of 3,000 was used, but all runs were scored
to depth 1,000.
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Figure 1: E�ectiveness di�erence in “user query variation” fusion using the fusion methods described in Table 1.

4 FUSION PERFORMANCE DEGRADATION
In the recently published work of Bailey et al. [3], query variations
were used with the newly proposed RBC rank fusion method to fuse
the result lists for each query. �e authors evaluated their approach
in the presence of the recall-oriented metrics AP and NDCG, and
the utility-based evaluation metrics RBP and INST. �ery variation
fusion showed a signi�cant improvement in retrieval e�ectiveness
in all of the tested con�gurations for all of the evaluation metrics.
�e authors also observed the “consistency” of query variations,
where consistency was de�ned as how consistently di�erent query
variants returned the same documents, relative to each other using
Rank-Biased Overlap [32]. Inspired by the encouraging retrieval
e�ectiveness exhibited over query fusion in their work, we extend
the exploration to risk-reward trade-o�s in both system fusion and
query fusion.

In Figure 1, the e�ectiveness pro�les of a query fusion for all
variants where runs are formed using BM25 is shown. Despite
signi�cant improvements in overall e�ectiveness, fusion is still
susceptible to performance degradation in both Newswire and web
data, where ≈ 70% of queries show improvement over a BM25
baseline, but the remaining ≈ 30% are worse. �is is a well-known
problem in query expansion [6] and even sequential dependency
models [20], but is generally ignored. From Figure 1a and 1b, we see
that most rank fusion methods are behaving with a similar pro�le —
with the exception of ISR and logISR which performs less e�ectively
than all others, and Borda does not appear to be operating with the
same risk-sensitivity as CombMNZ, CombSUM, RBC ϕ = 0.99 and
RRF on the ClueWeb12B collection.

Table 3 lists the overall retrieval e�ectiveness for each of these
methods, where RRF is shown to be marginally more e�ective than
other methods surveyed in their current parameterized form. All of
the methods outperform a single query baseline, but incur risk. �at
is, a reasonable number of queries in both collections are at least
10% worse than the baseline. When wins and losses are counted
as deviations 10% more or less than the per-topic baseline score,

Table 3: E�ectiveness comparisons for all fusion methods for both
collections using BM25 with all query variations. Wins and Losses
are computed when the score is 10% greater or less than the BM25
baseline on the original title-only topic run.

System Robust04 ClueWeb12B

AP Wins Losses NDCG@10 Wins Losses

Borda 0.311 ‡ 148 49 0.235 55 32
CombMNZ 0.327 ‡ 149 44 0.258 ‡ 55 24
CombSUM 0.331 ‡ 153 38 0.258 ‡ 52 24
ISR 0.264 92 78 0.165 † 29 50
logISR 0.267 99 75 0.199 41 38
RRF 0.331 ‡ 156 39 0.263 ‡ 59 21

RBC,ϕ = 0.90 0.306 ‡ 140 67 0.250 † 55 21
RBC,ϕ = 0.95 0.314 ‡ 144 64 0.257 ‡ 52 20
RBC,ϕ = 0.98 0.323 ‡ 151 45 0.260 ‡ 52 21
RBC,ϕ = 0.99 0.326 ‡ 153 44 0.260 ‡ 60 24

we observe that RRF incurs fewer losses than any other surveyed
method for BM25 query fusion. In theory, RBC is a more general
method that RRF, but RRF performs very well when using untuned
parameters. Our overarching goal in this work is to maintain these
e�ectiveness gains, but at the same time minimizing the likelihood
of losses.

Table 4 provides another angle for the observation of query
fusion risk-reward payo� using the TRisk evaluation metric. Where
α = 0, this represents an ordinary pairwise two-tailed t-test. We
observe that in all cases across all collections, except for logISR
and ISR, that the fusion methods are signi�cantly improving the
baseline, where t-values above 2 indicate no signi�cant risk of harm.
When the impact of losses is penalized twofold on Robust04 (α = 1),
the same positive result applies. For ClueWeb12B, however, no
query fusion methods are able to pass a t-test. When α = 5, the
only certainty for most rank fusion methods is that the baseline
score will be signi�cantly harmed. �e RRF rank fusion method
exhibits the greatest risk-sensitivity in almost all situations across



Table 4: Risk-Reward comparisons for all fusion methods for both collections using BM25 with all query variations. Signi�cant TRisk scores
are marked in bold.

System α = 0 α = 1 α = 5
URisk TRisk p-value URisk TRisk p-value URisk TRisk p-value

Robust04
Borda 0.057 6.788 < 0.001 0.035 3.054 0.003 -0.054 -2.060 0.040
CombMNZ 0.073 8.142 < 0.001 0.055 4.980 < 0.001 -0.016 -0.712 0.477
CombSUM 0.077 8.772 < 0.001 0.062 5.801 < 0.001 0.000 0.006 0.995
ISR 0.010 1.094 0.275 -0.028 -2.046 0.042 -0.180 -5.408 < 0.001
logISR 0.013 1.407 0.161 -0.023 -1.765 0.079 -0.165 -5.294 < 0.001
RRF 0.077 8.817 < 0.001 0.062 5.833 < 0.001 0.001 0.023 0.982
RBC ϕ = 0.90 0.052 5.729 < 0.001 0.026 2.179 0.030 -0.080 -3.220 0.001
RBC ϕ = 0.95 0.060 6.724 < 0.001 0.038 3.334 0.001 -0.053 -2.308 0.022
RBC ϕ = 0.98 0.069 7.662 < 0.001 0.050 4.513 < 0.001 -0.026 -1.217 0.225
RBC ϕ = 0.99 0.072 8.104 < 0.001 0.054 4.950 < 0.001 -0.018 -0.851 0.396

ClueWeb12B
Borda 0.023 1.625 0.107 -0.019 -0.912 0.364 -0.189 -3.583 0.001
CombMNZ 0.046 3.792 < 0.001 0.022 1.391 0.167 -0.074 -2.229 0.028
CombSUM 0.046 3.867 < 0.001 0.024 1.551 0.124 -0.066 -2.091 0.039
ISR -0.046 -2.698 0.008 -0.128 -4.432 < 0.001 -0.457 -5.773 < 0.001
logISR -0.012 -0.725 0.470 -0.074 -2.661 0.009 -0.319 -4.314 < 0.001
RRF 0.051 4.156 < 0.001 0.031 1.987 0.050 -0.050 -1.573 0.119
RBC ϕ = 0.90 0.037 3.414 0.001 0.018 1.165 0.247 -0.068 -2.079 0.040
RBC ϕ = 0.95 0.045 3.988 < 0.001 0.027 1.914 0.057 -0.045 -1.552 0.124
RBC ϕ = 0.98 0.049 4.063 < 0.001 0.030 1.994 0.049 -0.047 -1.590 0.115
RBC ϕ = 0.99 0.049 4.081 < 0.001 0.028 1.812 0.073 -0.057 -1.810 0.073

both document collections, with the exception of α = (1,5) on
ClueWeb12B where RBC ϕ = (0.98, 0.95) is marginally be�er.

Despite achieving commendable evaluation scores over di�erent
retrieval metrics, there are e�ectiveness risks to a sizable minority of
topics where a simple BM25 single query run would have been more
e�ective. In order to understand whether these risks are endemic
to query fusion, or are latent in retrieval methods more generally,
we �rst compare the risks with choosing one retrieval model over
another, issuing a single query. When a single query BM25 run is
formed using the most frequently submi�ed query variant in the
UQV100 test collection on the ClueWeb12B corpus, the NDCG@10
aggregate score is 0.212. When issuing the same query to a more ef-
fective sequential dependency model weighted for terms occurring
in di�erent �elds in a web document, the NDCG@10 aggregate
across all topics is 0.233. Despite the improved score, it is not signif-
icant (p-value = 0.06). However, although a global inference could
not be made, a small subset of topics are shown in Figure 2 that
demonstrate no chance of damaging the baseline e�ectiveness, or
signi�cantly damaging the baseline score.

Figure 2a shows the TRisk per-topic pro�le for SDM+Fields com-
pared against BM25 on the ClueWeb12B corpus. When α = 0,
topics 220, 221, 228 and 239 all show no harm to the baseline, con-
versely, topic 210 has signi�cant TRisk. As the α value increases,
only topic 220 is shown to operate with risk-sensitivity compared

to the baseline, while more topics experience statistically signi�-
cant loss. Figure 2b, shows a similar story for pseudo-relevance
feedback on BM25 using Robust04. While many topics show no
chance of harm, the most signi�cant of which; topics 352 and 654 —
topics 308, 430 and 616 harm the baseline BM25 e�ectiveness over
a 95% con�dence interval. As the impact of losses is scaled twofold,
many topics are still showing signi�cant improvement over the
baseline — a testament to the strength of pseudo-relevance feedback
when no query dri� has a occurred, and previously observed by
Zighelnic and Kurland [35]. But for every topic still showing no
harm, the amount of topics showing signi�cant harm has doubled.
�is situation illustrates the need to diversify the retrieval methods
employed in a system if it is to behave with risk-sensitivity, as one
retrieval model’s weaknesses is another model’s strength [19].

In order to show this, we used RRF to fuse all system variations
together, where each system’s e�ectiveness with per-topic wins
and losses is documented in the top-half of Table 5 and 6. When
fusing all Robust04 system variations, an AP score of 0.286‡ is
achieved, where 142 topics are improved and 21 are worsened
with respect to the baseline. By observing the wins and losses
columns in Table 5 showing system variations, and Table 3 showing
BM25 query fusion, we observe that 21 losses is signi�cantly less
than other methods, despite the aggregate score in the fused run
being lower than BM25+QE alone. �e second-smallest number of
losses is incurred with query fusion, in all, totalling 39 topics. Over
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Figure 2: Rolling the dice: Although the aggregate scores can show improved e�ectiveness, signi�cantly harming the baseline is possible for
a subset of topics when only using a single system.

ClueWeb12B, we fused only SDM+Fields and BM25 together. �e
fused result has an NDCG@10 score of 0.235†, with 55 wins and 32
losses. �is is a marginally be�er aggregate score than SDM+Fields,
however now 10 additional topics are achieving be�er scores with
no relative loss. BM25 query fusion outperforms system fusion in
both aggregate score, and risk-sensitivity; where RRF is able to
achieve an NDCG@10 score of 0.263‡ with 21 losses.

�ere are two important observations to be gleaned in this sec-
tion. We show that query fusion exhibits a risk-reward trade-o�
when compared to a single query, and that rank fusion can improve
the risk-reward payo� — compared to independent retrieval sys-
tems and in Robust04’s case, query fusion. In the next section, we
observe the risk-reward payo� of query fusion when undertaken
in the presence of multiple systems. Further, we explore whether
double fusion of system and query variations is additive, and try to
determine if it changes the balance of risk and reward.

5 REDUCING QUERY FUSION RISK WITH
RETRIEVAL MODELS

In the previous section, we showed that query variation fusion over
BM25 exhibits a risk-reward trade-o�, when juxtaposed against its
initial query variant BM25 counterpart. In this section, we take
methods known to improve the retrieval e�ectiveness, and apply
them to query variant runs.

Observe in the bo�om-half of Table 5 and 6, the properties of
query fusion runs formed using RRF over di�erent retrieval sys-
tems. Table 5 shows query fusion on the Robust04 corpus using
the TREC Core 2017 query variants. A signi�cant boost in retrieval

Table 5: E�ectiveness comparisons for all retrieval models on
Robust04 using BM25 as a baseline. Wins and Losses are computed
when the score is 10% greater or less than the BM25 baseline on
the original title-only topic run.

System AP Wins Losses
BM25 0.254 - -
BM25+QE 0.292 ‡ 130 62
FDM 0.264 † 86 66
FDM+QE 0.275 ‡ 102 46
BM25+Fuse 0.331 ‡ 156 39
BM25+QE+Fuse 0.340 ‡ 166 41
FDM+Fuse 0.336 ‡ 171 34
FDM+QE+Fuse 0.349 ‡ 174 32

e�ectiveness in query fusion is shown to be possible by using more
e�ective systems. FDM+QE+Fuse is the best performing query fusion
run. Surprisingly, in a title-only situation the aggregate score for
BM25 with pseudo-relevance feedback was greater than FDM with
query expansion. However, in a query fusion scenario, FDM with
pseudo-relevance feedback is more e�ective than BM25+QE. �e
reasoning behind this unclear — one hypothesis could be that FDM
is able to perform signi�cantly be�er with more terms, and query
variations tend to be more verbose than the original title queries.
We leave the analysis of this phenomena to future work. Also of
interest in Table 5 are the wins and losses columns. As the query
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Figure 3: �e TRisk risk-reward pro�les for all fusion technique combinations used in this study. All runs were fused using RRF.

Table 6: E�ectiveness comparisons for all retrieval models on
ClueWeb12-B using BM25 as a baseline. Wins and Losses are com-
puted when the score is 10% greater or less than the BM25 baseline
on the original title-only topic run.

System NDCG@10 Wins Losses
BM25 0.212 - -
SDM+Fields 0.233 45 32
BM25+Fuse 0.263 ‡ 59 21
SDM+Fields+Fuse 0.294 ‡ 65 18

fusion method becomes more e�ective, there are fewer losses and
more wins — rather than a case where there are more ties or a
change only on one side of the risk-reward trade-o�. Indeed, this
observation is re�ected in Table 6, albeit on a small sample. Draw-
ing our a�ention back to the previous section where we performed
a system fusion over Robust04, the system fused run incurred a loss
over 32 queries when compared to a BM25 title run. Here, we see
that FDM+QE+Fuse is able to incur the same number of losses, but
with a signi�cantly greater AP e�ectiveness of 0.349‡.
Double Fusion. Double fusion is the process of taking query vari-
ation runs generated by multiple systems, and performing a single
rank fusion over them all to retrieve a result set with improved
precision and recall. In a double fusion over the Robust04 query/sys-
tem combinations, an AP score of 0.354‡ is achieved with 183 wins
and 25 losses using RRF. Similarly for ClueWeb12B, an NDCG@10
score of 0.300‡ is a�ained, with 71 wins and 10 losses. Figure 3
displays the risk-reward pro�le of double fusion, in the context of
all system con�gurations discussed in this paper — where all fusion
methods are generated using RRF. For ClueWeb12B in Figure 3a,
double fusion is a clear winner when evaluated using the TRisk
measure. Remarkably, when α = 3, that is the impact of losses is
quadrupled, the double fusion method is improving a BM25 base-
line with statistical signi�cance on a Student t-test. In contrast,

quadrupling the losses incurred on a SDM+Fields run would result
in signi�cant harm to the baseline. In Figure 3b, the risk-reward
payo� of double fusion follows a similar curve to the most e�ec-
tive risk-reward trade-o� previously discovered over system fusion.
Here we show that even with an α = 5, Robust04 double fusion is
still able to show a strongly positive risk-reward trade-o� relative
to the baseline.

6 CONCLUSIONS AND FUTUREWORK
To summarize our �ndings, Figure 4 displays all fusion methods
over the main fusion scenarios investigated: fusion over system
variations, query fusion using BM25, and double fusion. Figure 4a
shows that both query fusion and system fusion exhibit a similar
degradation in performance, however Figure 4b shows that system
fusion can exhibit a similar risk-reward pro�le with that of double
fusion. We show that both system fusion and query fusion are
susceptible to query performance degradation, as TRisk scores in
Figure 4a are below zero. However, we �nd in Figure 4b that perhaps
system fusion is less volatile than query fusion at harming the risk-
reward payo� — tentatively answering RQ1. Figure 4 also shows
that system-based and query-based rank fusion methods are able
to achieve the best risk-reward trade-o� using double fusion out
of all methods studied, where the top-right-most cluster of rank
fusion methods is shown in both e�ectiveness vs. TRisk graphs
across Robust04 and ClueWeb12B — answering RQ2.

It is worth noting that our double fusion run on the Robust04
collection has an AP e�ectiveness comparable to the best known
run on this collection – pircRB04td2. Our system is statistically
signi�cantly be�er than this run for P@10 (0.550 vs 0.541). It is a
li�le more di�cult to compare our ClueWeb12B runs as the origi-
nal queries were faceted. Nevertheless, this is quite a remarkable
result for an untuned, unsupervised method, that is also low risk,
high reward. We intend to explore more principled approaches
to combining rank fusion and learning-to-rank in future work to
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Figure 4: E�ectiveness vs. Risk-Reward payo� over all fusion methods for all fusion scenarios. Yellow line indicates the baseline e�ectiveness
score to be improved.

see if similar improvements can be realized in multi-stage retrieval
systems [7, 11].
Acknowledgements. �is work was supported by the Australian
Research Council’s Discovery Projects Scheme (DP170102231) and a
grant from the Mozilla Foundation.

REFERENCES
[1] T. G. Armstrong, A. Mo�at, W. Webber, and J. Zobel. 2009. Improvements that

don’t add up: ad-hoc retrieval results since 1998. In Proc. CIKM. 601–610.
[2] P. Bailey, A. Mo�at, F. Scholer, and P. �omas. 2016. UQV100: A test collection

with query variability. In Proc. SIGIR. 725–728.
[3] P. Bailey, A. Mo�at, F. Scholer, and P. �omas. 2017. Retrieval Consistency in

the Presence of �ery Variations. In Proc. SIGIR. 395–404.
[4] J. Bartholdi, C. A. Tovey, and M. A. Trick. 1989. Voting schemes for which it can

be di�cult to tell who won the election. Social Choice and Welfare 6, 2 (1989),
157–165.

[5] N. J. Belkin, P. Kantor, E. A. Fox, and J. A. Shaw. 1995. Combining the evidence
of multiple query representations for information retrieval. Inf. Proc. & Man. 31,
3 (1995), 431–448.

[6] B. Billerbeck and J. Zobel. 2004. �estioning query expansion: An examination
of behaviour and pa�erns.. In Proc. ADC. 69–76.

[7] R.-C. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. 2017. E�cient cost-aware
cascade ranking in multi-stage retrieval. In Proc. SIGIR. 445–454.

[8] K. Collins-�ompson, C. Macdonald, P. Benne�, F. Diaz, and E. M. Voorhees.
2014. TREC 2013 web track overview. In Proc. TREC.

[9] K. Collins-�ompson, C. Macdonald, P. Benne�, F. Diaz, and E. M. Voorhees.
2015. TREC 2014 web track overview. In Proc. TREC.

[10] G. V. Cormack, C. L. A. Clarke, and S. Bue�cher. 2009. Reciprocal rank fusion
outperforms condorcet and individual rank learning methods. In Proc. SIGIR.
758–759.

[11] J. S. Culpepper, C. L. A. Clarke, and J. Lin. 2016. Dynamic cuto� prediction in
multi-stage retrieval systems. In Proc. ADCS. 17–24.
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