
VLDB manuscript No.
(will be inserted by the editor)

Finding the optimal location and keywords in obstructed and
unobstructed space

Farhana Murtaza Choudhury1 · J. Shane Culpepper1 · Zhifeng Bao1 · Timos Sellis2

Received: date / Accepted: date

Abstract The problem of optimal location selection based
on reverse k nearest neighbor (RkNN) queries has been ex-
tensively studied in spatial databases. In this work, we present
a related query, denoted as a Maximized Bichromatic Re-
verse Spatial Textual k Nearest Neighbor (MaxST) query,
that finds an optimal location, and a set of keywords for an
object so that the object is a kNN object for as many users
as possible. Such a query has many practical applications
including advertisements, where the query is to find the lo-
cation and the text contents to include in an advertisement
so that it is relevant to the maximum number of users. The
visibility of the advertisements also has an important role in
the users’ interests. In this work, we address two instances of
the spatial relevance when ranking items: (i) the Euclidean
distance and (ii) the visibility. We carefully design a series
of index structures and approaches to answer the MaxST for
both instances. Specifically, we present (i) the GRP-TOPK

approach that requires the computation of the top-k objects
for all of the users first, and then applies various pruning
techniques to find the optimal location and keywords; (ii)
the INDIV-U approach, where we use similarity estimations
to avoid computing the top-k objects of the users that can-
not be a final result; and (iii) the INDEX-U approach where
we propose a hierarchical index structure over the users to
improve pruning. We show that the keyword selection com-

Farhana Murtaza Choudhury
E-mail: farhana.choudhury@rmit.edu.au

J. Shane Culpepper
E-mail: shane.culpepper@rmit.edu.au

Zhifeng Bao
E-mail: zhifeng.bao@rmit.edu.au

Timos Sellis
E-mail: tsellis@swin.edu.au
1RMIT University, Melbourne, Australia
2Swinburne University of Technology, Hawthorn, Australia

ponent in MaxST queries is NP-hard, and present both ap-
proximate and exact solutions for the problem.

Keywords Spatial-textual query · Reverse kNN · Efficiency

1 Introduction

The optimal location selection problem is an important task
in making business decisions. As a result, a number of stud-
ies have addressed different instances of this problem, and
queries such as the Maximized Bichromatic Reverse k Near-
est Neighbor (MaxBRkNN) queries [20, 33, 34, 43] have re-
ceived considerable attention in the spatial database com-
munity in recent years. Given a set of users U and a set of
objects O over a shared spatial dataspace, a bichromatic re-
verse k nearest neighbor (BRkNN) query for an object o ∈ O
returns all the users u ∈ U for which o is a kNN in O. A
MaxBRkNN query finds the optimal region to place a new
object, p 6∈ O such that the number of users in the result of
the BRkNN query issued by p is maximized.

A practical application of these queries is to find the lo-
cation of a new business or a new facility that can serve the
maximum number of customers. In the literature, spatial dis-
tance is usually the only relevance criteria considered. How-
ever, customers are generally interested in the products and
services as well as the location. Therefore, spatial-textual
query is an interesting extension in this setting. The prob-
lem has recently been studied for spatial-textual databases,
where Gkorgkas et al. [13] find a set of keywords for an
object in a fixed location such that the object is a kNN of
the maximum number of users w.r.t. both spatial and textual
similarities.

Despite significant progress on this problem, there is a
research gap in finding both an optimal location and a key-
word set for an object, which is a natural extension of the
problem. Moreover, as targeted applications become more

2 Farhana Murtaza Choudhury1 et al.

practical, physical obstacles must also be factored into the
solution. For example, visibility can have an important role
in improving advertisement reach, frequency, and impact.
While previous research has explored various visibility re-
lated queries, no prior work has considered the affect of vi-
sual obstacles in the context of BRkNN problems. Consider
the following example applications that highlight the impor-
tance of these factors.

Example 1 In social media advertising, a user is shown a
limited number of advertisements that are highly relevant
to their location and preferences (top-k relevant advertise-
ments). In this case, given a set of candidate locations and
keyword choices, the application is to find the location and a
limited number of keywords to include in an advertisement
such that it is displayed to the maximum number of users.

Example 2 Consider a company who wants to place a new
billboard for an advertisement p. An important attribute in
this scenario is the visibility of the billboard for potential
customers in the presence of obstacles, such as buildings in
a city. So given a set of potential locations where a billboard
can be placed and a set of keywords appropriate for the ad-
vertisement, the problem is to find an optimal location and a
limited number of keywords for p such that p is relevant and
visually unobstructed for as many customers as possible.

In both examples, the underlying problem is to find the
location and text for a specific product or service such that
the product is one of the k most relevant objects of the max-
imum number of users, which is maximizing the size of the
bichromatic reverse kNN of the product. Here, the ranking is
based on both spatial and textual properties. In the first ex-
ample, the spatial relevance of an object (advertisement) is
the spatial proximity (Euclidean distance) from a user. In the
second instance, the spatial relevance is the visibility of an
object from a user in the presence of visual obstacles (build-
ings). In contrast to the spatial proximity, the visibility of an
object from a user depends on other objects in the dataset
that are located in between the user and the object.

In this article, a new query variation is presented – the
Maximized Bichromatic Reverse Spatial Textual k Nearest
Neighbor (MaxST) query. Two different instances of spa-
tial relevance are explored for ranking objects: (i) the Eu-
clidean distance, and (ii) the visibility. A series of carefully
designed indexes and traversal algorithms are proposed to
process MaxST queries for both of the instances.

This article builds on our previous work [7], where the
problem for the first instance (Euclidean distance as spatial
relevance) was initially introduced. In that prior work, the
GRP-TOPK approach was proposed to efficiently find the
best location and keyword set combination that requires the
computation of the top-k objects for all of the users. A new
indexing structure, the MIR-tree was also introduced. The

Modified IUR-tree (MIUR-tree) was used to index the users,
and was motivated by the desire to avoid computing the top-
k objects for users that cannot be in the final result set.

The visibility of an object introduces additional chal-
lenges when computing spatial relevance in this problem,
as the visibility of an object o w.r.t. a user u depends not
only on their own locations, but also the on the other objects
(visual obstacles) between o and u. Due to the importance of
visibility for many applications, we extend our MaxST query
solutions for visibility, which represents the first work ad-
dressing the effect of visual obstacles on Maximized Bichro-
matic Reverse Spatial Textual kNN queries.

In particular, this work extends our prior contributions in
the following aspects - (i) The solutions from prior work [7]
are extended to address the MaxST problem for both unob-
structed and obstructed space, where the spatial relevance of
an object is based on Euclidean distance, and visibility, re-
spectively. (ii) In addition to the two approaches (the GRP-
TOPK approach and the INDEX-U approach) presented by
Choudhury et al. [7], a new approach is proposed, INDIV-U
which also avoids computing the top-k objects for the users
that cannot affect the final result, and does not require the
set of users to be indexed. (iii) A new index structure, the
OIR-tree, is proposed to support the visibility computation
and extend the approaches for visibility as the spatial rel-
evance in this problem; and (iv) A comprehensive experi-
mental study is presented to demonstrate the efficiency of
our proposed techniques and compare relative performance.

For the rest of the article, the phrase “reverse k nearest
neighbor (RkNN)” is used instead of “bichromatic spatial-
textual reverse k nearest neighbor” when the context is clear.
We also use the terms “top-k” and “kNN” interchangeably.

2 Problem formulation

Let D be a bichromatic dataset, where U is a set of users and
O is a set of objects. Each object o ∈ O is a pair (o.l,o.d),
where o.l is a geo-spatial position (point, rectangle, or poly-
gon) and o.d is a set of keywords (which can be empty).
Each user u ∈U is also defined as a similar pair (u.l,u.d).
For an object o, let Bo denote the set of users that have o
as its kNN based on a combined spatial and textual relevance
score.

Definition 1 A MaxST query q(p,L,W,ω,k) over D, where
p 6∈ O is a specific spatial-textual object, L is a set of spatial
candidate locations (point, line, rectangle, etc.), W is a set of
candidate keywords, ω is a positive integer where ω ≤ |W |,
and k is the number of relevant objects to be considered,
finds a ` ∈ L and a set of keywords W ′ ⊆W , |W ′| ≤ ω such
that if p.l = ` and p.d = W ′, the cardinality |Bp| is max-
imized. If p has any existing text description, then p.d =

(W ′∪ p.d) and p.l = ` combinedly maximize |Bp|.

Finding the optimal location and keywords in obstructed and unobstructed space 3

Table 1: Basic notation

Symbol Description

O (U) The set of objects (users).
L (W) The set of candidate spatial positions (keywords).
ω The maximum number of keywords to select.
u+ The super-user.
CS(o,u) The combined similarity measure of an object o

w.r.t. a user u.
SS(o,u)
(SS(o,u))

The spatial similarity between o and u as the Eu-
clidean distance (as visibility).

TS(o,u) The textual similarity between o and u.
VL(o,u) The visible length of o from u.
Rk(u) The similarity value of the k·th ranked object of u.
Bp The set of users that are RkNN of an object p.
B↓` (B↑`) The set of users that are definitely (that can be) a

reverse kNN of an object with location ` based on a
lower (an upper) bound.

CS↑(E,u)
(CS↓(E,u))

The upper (lower) bound of similarity measure of a
node E w.r.t. a user u.

CS↑(`,u)
(CS↓(`,u))

The upper (lower) bound of similarity measure of
an object o with location o.l = ` w.r.t. a user u.

LOu A min-priority queue to keep the k objects with the
best lower bounds w.r.t. u found so far.

EU A node of an MIUR-tree of the users.
Section 8:
ζ A cell of the auxiliary Quadtree.
OR(u) The obstructed region of u.
OL(ζ) The users for which ζ is completely inside OR(u).
len↓(E),
len↑(E)

The minimum (maximum) length of an object
stored in the subtree rooted at node E.

o.θ The angle of o w.r.t. the Cartesian X-axis.
χE,u, χ̂E,u The set of leaf level cells of the Quadtree that are

visible (not visible) from u and intersects with at
least one object in node E.

VL↓
∆
(∆o.l,u.l),

VL↑
∆
(∆o.l,u.l)

Minimum (maximum) perceived length of segment
∆o.l from u.l.

∠↓(∆o.l,u.l),
∠↑(∆o.l,u.l)

Minimum (maximum) angle between the segment
∆ loco and u.l.

∠↓(∆o.l,u+),
∠↑(∆o.l,u+)

Minimum (maximum) angle between the segment
∆ loco and any user u from u+.

In this work, the problem of MaxST is addressed for the
two instances of the spatial relevance in the ranking of an
object, (i) the spatial proximity (Euclidean distance) w.r.t. a
user and (ii) the visibility from a user in the presence of vi-
sual obstacles. Now we present the similarity measures that
are used in this article.
Combined similarity measure. An object o is ranked based
on a combined score of spatial and textual relevance with
respect to a user u. Without loss of generality, the following
widely adopted linear weighted combination score [8, 21] is
used in this article:

CS(o,u) = α ·SS(o.l,u.l)+(1−α) ·TS(o.d,u.d) , (1)

where SS(o.l,u.l) is the spatial similarity between the lo-
cations, the textual relevance is TS(o.d,u.d), and the pref-
erence parameter α ∈ [0,1] defines the importance of one
relevance measure relative to the other. The value of both

Δo.l

d(Δ
o.l,

u.l
)

∠(
Δo
.l,
u.
l)

u

Fig. 1: Visibility measure

measures are normalized within [0,1]. Here, a higher score
denotes higher relevance. The text similarity and two dif-
ferent spatial similarity measures (proximity and visibility)
used in this article are now presented.
a. Text similarity. An object o is considered similar to a
user u iff o.d contains at least one term t ∈ u.d. Several mea-
sures can be used to compute the similarity between any two
text descriptions [23]. We use the TF·IDF metric [30] for il-
lustration purpose in this work, but our approach is applica-
ble to any text-based similarity measure.

The term frequency, TF(t,o.d), counts how many times
the term t appears in a document object o.d, and the Inverse
Document Frequency, IDF(t,O)= log |O|

|o∈O,TF(t,o.d)>0| mea-
sures the importance of t w.r.t. all of the documents in an
object collection O. The text similarity of an object o.d with
respect to a user u is

TS(o.d,u.d) = ∑
t∈u.d∩o.d

TF(t,o.d)× IDF(t,O) (2)

b. Spatial proximity. The spatial proximity of an object
o w.r.t. a user u is measured using the minimum Euclidean
distance, ddd ↓(o.l,u.l) as:

SS(o.l,u.l) = 1− ddd ↓(o.l,u.l)
dmax

, (3)

where dmax is the maximum Euclidean distance between any
two points in D. If the spatial location is any shape other than
points, such as a line or rectangle, then the minimum Eu-
clidean distance between those two shapes is used to com-
pute the spatial proximity with the same equation.
c. Visibility measure. We now explain the visibility quan-
tification for a line as the geometric shape of the spatial data.
For each o ∈O, o.l is a line for the rest of the article for vis-
ibility, but the calculations are representative of any other
geometric shape. An object o is considered visually relevant
to a user u iff at least one point of o.l is visible from the
user u.l, i.e., there exists a point a over the line segment o.l
such that the straight line connecting a and u.l does not pass
through any other objects in O.

Previous work [5, 24, 41] has defined and used different
metrics to quantify visibility. The metric, called “visual an-
gle” used by Choudhury et al. [5] is the angle formed at the
eye of a user by the extremities of an object viewed, which

4 Farhana Murtaza Choudhury1 et al.

determines the perceived length of that object. We adopt this
metric as the measure of visibility in this work. Specifically,
the visibility measure in our work is computed as:

SS(o.l,u.l) =
2arctan(VL(o.l,u.l))

180
(4)

where the maximum possible visual angle is 180o, which
is used to normalize the value of SS(o.l,u.l) between [0,1],
and VL(o.l,u.l) is the perceived length of o from u.l.

The perceived length of an object mainly depends on the
distance and the viewing angle between the user and the ob-
ject. If an object is viewed from an oblique angle, the per-
ceived length of that object becomes smaller than the origi-
nal length. The perceived length of o also decreases with the
increase of the distance between o and the user u. As dif-
ferent parts of an object always have different distances and
orientations w.r.t. a user, we use the cumulative approach
presented by Zhang et al. [41] to calculate visibility. Specif-
ically, we divide the line o.l into numerous infinitesimal seg-
ments of size at most ε such that, for each segment, ∆o.l, the
distances and the orientations of all points on ∆o.l w.r.t. to a
user u can be considered as visually similar. For example, in
Fig. 1, the segments are shown for an object o, and in Fig. 5,
the segments are shown for a particular object o2.

Let the straight line connecting the midpoint of a line
segment ∆o.l and the point location of the user u.l create
an angle ∠(∆o.l,u.l) with o.l. Let the minimum distance of
∆o.l and the user u.l be ddd ↓(∆o.l,u.l). Then the perceived
length of a segment ∆o.l w.r.t. u.l is measured as:

VL∆ (∆o.l,u.l) =
∠(∆o.l,u.l)

90o × len(∆o.l)

ddd ↓(∆o.l,u.l)
(5)

Here, if ∠(∆o.l,u.l) = 90o, the perceived length of the
line segment ∆o.l from a nominal distance is the same as
its original length, len(∆o.l). The perceived length of the
entire o.l w.r.t. u.l, VL(o.l,u.l), is obtained by summing up
the perceived lengths of all the small segments ∆o.l that are
visible from u.l:

VL(o.l,u.l) = ∑
∆o.l visible from u.l

VL∆ (∆o.l,u.l)

For example, in Fig. 5, to obtain the visibility of o2,
SS(o2.l,u.l), the perceived length of the segments of o2 that
are visible from u (represented with black) must be individ-
ually computed, and summed as VL(o.l,u.l) in Equation 4
to get the visibility value of object o2 w.r.t. u.

Algorithm 1: BASELINE (O,U,L, p,k, IR-tree)

1.1 Bp←∅
1.2 for each u ∈U do
1.3 Traverse IR-tree to find kNN objects of u
1.4 Rk(u)← similarity score of the k · th ranked object of u
1.5 C← Set of all combinations of ω keywords from W
1.6 for each ` ∈ L do
1.7 for each c ∈C do
1.8 for each u ∈U do
1.9 if c∩u.d 6=∅ then

1.10 p′.l = `; p′.d = p∪ c
1.11 if CS(p′,u)> Rk(u) then Bp′ ← u
1.12 if |Bp′ |> |Bp| then
1.13 p.l← `; p.d← p∪ c
1.14 return p

3 Solution overview

One can think of a straightforward solution for the MaxST
query consisting of the following steps shown in Algorithm 1:
(i) Find the top-k spatial-textual objects for all users in U in-
dividually using any of the existing techniques. Let the rel-
evance score of the k·th ranked object of a user u ∈ U be
Rk(u) (Lines 1.2 - 1.4). (ii) Generate all possible combina-
tions C of ω keywords from W . (iii) For each candidate lo-
cation ` ∈ L, and each keyword combination c ∈C, the total
relevance score of ` and p.d ∪ c are computed for the users
u∈U , where c∩u.d 6= /0. If this score is greater than Rk, u is
a RkNN of the object p with location ` and keyword set c. We
track the 〈`,c〉 with the maximum number of RkNN, and up-
date the location and keywords of p accordingly (Lines 1.6
-1.7). (iv) Finally p is returned where the location and the
keywords of p is the tuple 〈`,c〉 with the maximum number
of RkNNs as the result.
Challenges. The straightforward method is computation-
ally expensive for several reasons: (i) computing the top-k
results for all users; (ii) iterating over all of the candidate
locations; (iii) generating all combinations C of ω candidate
keywords; and (iv) computing the relevance scores for all
of the candidate location tuples, and c ∈ C with respect to
each user u ∈U . We now show that the candidate selection
part of the MaxST problem is NP-hard by reduction from the
Maximum Coverage problem.

Lemma 1 The MaxST problem is NP-hard.

Proof Given a collection of sets S = {S1,S2, . . . ,Sn}, and a
positive integer m, the Maximum Coverage (MC) problem
is to find a subset S′ ⊆ S such that |S′| ≤ m and the number
of covered elements by S′, |∪Si∈S′ Si| is maximized. The MC
problem is NP-hard [15].

Consider a special case of the MaxST problem where
α = 1. Here, the similarity score of the objects that contain
at least one of the user keywords are measured by the spa-
tial proximity using Eqn. 1. Also assume that the number of

Finding the optimal location and keywords in obstructed and unobstructed space 5

candidate locations, |L| = 1 in this special case. So p.l = `,
where ` is the only candidate location in L. For each can-
didate keyword w ∈W , let Bw be the set of users that have
p as a top-k object when w is included in p.d. So, a collec-
tion of the set of users exists, one for each w ∈W . The goal
of a MaxST query is to select at most ω keywords from W ,
such that the number of users for which p is a top-k object
is maximum. That is, solving the maximum coverage prob-
lem is equal to finding a subset of the candidate keywords,
W ′ ⊆W , where |W ′| ≤ ω maximizes |∪w∈W ′ Bw|.

Again, Bw for each w ∈W corresponds to each set Si of
the MC problem, where each user u j ∈ Bw corresponds to
the element of Si. Therefore, finding a subset W ′ of the can-
didate keywords where |W ′| ≤ω maximizing |∪w∈W ′Bw| is
equivalent to solving the maximum coverage problem. ut

Therefore, scanning all combinations is not practical for
a large number of candidates. To overcome these limitations,
we seek techniques that:

– Efficiently compute the top-k objects for the users;
– Avoid computing the top-k objects for the users that can-

not affect the result; and
– Prune the candidate locations and keywords that cannot

be part of the final result.

A series of approaches to answer the MaxST query are
presented. In each of these approaches, the idea is to avoid
processing the candidates that cannot be a result, avoid com-
puting the top-k objects of the users that do not have any
affect on the final optimal result, share object retrieval costs
among the users, and access the necessary objects only once.
The methods differ in the pruning techniques that are ap-
plied to achieve these goals. In the following, an overview
of three different solutions for MaxST queries are presented
from a high level, with differences between each explained.

– GRP-TOPK approach: This approach consists of two sep-
arate modules to answer the MaxST problem. First, an
efficient technique to compute the top-k objects for all
users jointly is presented to address the first challenge
mentioned above. Next, several pruning techniques are
applied to discard the candidates that cannot be a result,
where the score of the k·th ranked object of the users are
used to facilitate the pruning.

– INDIV-U approach: A limitation of the GRP-TOPK ap-
proach is that the top-k objects for all of the users must
be computed. Therefore, the INDIV-U approach is pro-
posed to avoid computing the top-k objects for users that
do not affect the final result set. The idea is to estimate
the number of objects that can have a higher similarity
than a candidate for each user u∈U with a single traver-
sal of the objects. This number is used to prune the un-
promising candidates and also the unnecessary users that
cannot be an RkNN of any promising candidate.

o1

o5

o3

o4

o2

o6

o7

R1

R2
R4

R6
R5

R7

R3

(a) Objects and MBRs

o1

o5

o3

o4

o2

o6

o7

u5

u6

u1

u2

u3
u4

u7

(b) Objects and users

Fig. 2: The placement of the objects and the users

o1 o2 o3 o4 o5 o6 o7

R1 R2

R5 R6

R3 R4

R1 R2 R3 R4

R5 R6

InvFile1

InvFile5

InvFile7

InvFile6

InvFile2 InvFile3 InvFile4

R7

Fig. 3: Min-max IR-tree (MIR tree)

– INDEX-U approach: In the previous approach, the users
are pruned by checking each one individually against
the candidates. So, a new index is proposed, the Mod-
ified IUR-tree (MIUR-tree) to store the users, where the
motivation is that a hierarchical index structure over the
set of users may exhibit a higher pruning capacity than
checking them individually.

In Section 4 - 7, we propose approaches to answer a
MaxST query, where the steps are described using the Eu-
clidean distance as spatial similarity measure. In Section 8,
extension of the solutions are presented to support answer-
ing a MaxST query in obstructed space, where the spatial
relevance is measured as visibility.

4 Index structure

Table 3: Text description of the users

PPPPPPTerm
User

u1 u2 u3 u4 u5 u6 u7

t1 1 1 1 1 1 1 1
t2 0 0 0 1 1 0 0
t3 1 1 0 1 0 0 0
t4 1 1 0 0 0 1 1

We propose a new index, the Min-Max IR-tree (MIR-tree),
to index the set of objects O to support efficient process-
ing of the MaxST query. The MIR-tree is an extension of the
IR-tree [8]. We first give an brief overview of the IR-tree, then
we describe how we have extended the IR-tree to construct
our proposed index.

6 Farhana Murtaza Choudhury1 et al.

Table 2: Posting lists for the example MIR-tree

Term InvFile 1 InvFile 2 InvFile 3 InvFile 4 InvFile 5 InvFile 6 InvFile 7
t1 (o1,1,1) (o3,5,5) (o5,4,4) (o6,1,1),(o7,2,2) (R1,1,0), (R2,5,0) (R3,4,4), (R4,2,1) (R5,5,0),(R6,4,1)
t2 (o1,4,4) - (o5,1,1) - (R1,4,0) (R3,1,1) (R5,4,0),(R6,1,0)
t3 - (o3,5,5) - (o6,1,1) (R2,5,0) (R4,1,0) (R5,5,0),(R6,1,0)
t4 (o2,1,1) (o4,2,2) - (o7,3,3) (R1,1,0),(R2,2,0) (R4,3,0) (R5,2,0),(R6,3,0)

An IR-tree is an R-tree [14] where each node is aug-
mented with a reference to an inverted file [44] for the doc-
uments in the subtree. Each node R contains a number of
entries, consisting of a reference to a child node of R, the
MBR of all entries of the child node, and an identifier of a
text description. If R is a leaf node, this is the identifier of the
text description of an object. Otherwise, the text identifier is
used for a pseudo-text description. The pseudo-text descrip-
tion is the union of all text descriptions in the entries of the
child node. The weight of a term t in the pseudo-document
is the maximum weight of the weights of this term in the
documents contained in the subtree. Each node has a refer-
ence to an inverted file for the entries stored in the node. A
posting list of a term t in the inverted file is a sequence of
pairs 〈d,www(d, t)〉, where d is the document id containing t,
and www(d, t) is the weight of term t in d. In this article, the
weight of a term t in a document d is computed using the
TF·IDF metric described in Section 2.

4.1 Min-Max IR-tree (MIR-tree)

We propose the Min-Max IR-tree (MIR-tree) to index the
objects. The objects are inserted in the same manner as in
the IR-tree. However, unlike an IR-tree, each term is associ-
ated with both the maximum www↑(d, t) and minimum www↓(d, t)
weights in each document. The posting list of a term t is
a sequence of tuples 〈d,www↑(d, t),www↓(d, t)〉, where d is the
document identifier containing t, www↑(d, t) is the maximum,
and www↓(d, t) is the minimum weight of term t in d, respec-
tively. If R is a leaf node, both weights are the same as the
actual weight of the term t, www(d, t) in the IR-tree. If R is a
non-leaf node, the pseudo-document of R is the union of all
text descriptions in the entries of the child node. The maxi-
mum (minimum) weight of a term t in the pseudo-document
is the maximum (minimum) weight in the union (intersec-
tion) of the documents contained in the subtree. If a term is
not in the intersection, www↓(d, t) is set to 0.

Fig. 2a shows the locations and the text descriptions of
an example dataset O= {o1,o2, . . . ,o7} and Fig. 3 illustrates
the MIR-tree for O. Table 2 presents the inverted files of the
leaf nodes (InvFile 1 - 4) and the non-leaf nodes (InvFile 5
- 7) of the MIR-tree for the example objects in Fig. 2a. The
tree structure of the MIR-tree is same as the IR-tree. As a
specific example, the maximum (minimum) weight of term
t1 in entry R4 of InvFile 6 is 2 (1), which is the maximum

(minimum) weight of the term in the union (intersection) of
documents (o6,o7) of the node R4.
Index construction cost. In contrast to the IR-tree [8], the
space requirements for the MIR-tree include an additional
weight stored for the minimum text relevance for each term
in each node. Specifically, for a node N, if the number of
terms is M, the additional space is required to store ∑

M
i=1 ni

weights, where ni is the number of objects in the posting list
of term ti in node N. The construction time of the MIR-tree is
very similar to the original IR-tree. During tree construction,
when determining the maximum weight of each term in a
node, the minimum weight of that term can be determined
concurrently. As the split and merge of the nodes are exe-
cuted in the same manner as the IR-tree, the update costs of
the MIR-tree are also same as that of the IR-tree.

The MIR-tree is an extension of the original IR-tree pre-
sented by Cong et al. [8], who also proposed other variants
of the IR-tree, such as the DIR-tree, the CIR-tree, and the
CDIR-tree, where both spatial and textual criteria are con-
sidered to construct the nodes of the tree. The same struc-
tures can be used during the construction our proposed ex-
tension. For example, the nodes of the MIR-tree can be con-
structed in the same manner as the DIR-tree, and the posting
lists of each node will contain both the minimum and maxi-
mum weights of the terms.
User grouping. Our goal is to access the necessary objects
from disk, and avoid duplicate retrieval of objects for differ-
ent users. We form a group of users, denoted as a “super-
user” (u+), to facilitate the pruning of the objects and the
candidates.

The “super-user” (u+) is constructed such that u+.l is
the MBR enclosing the locations of all users, u+.dUni is the
union, and u+.dInt is the intersection of the keywords of all
users, respectively. As an example, Fig. 2b shows the loca-
tions of the users U = u1,u2, . . . ,u7 and the corresponding
text descriptions are presented in Table 3. The location of
the “super-user”, u+.l is the MBR enclosing the locations of
all the users, shown with a dotted rectangle. Here, the inter-
section of the keywords of all the users, u+.dInt is ‘t1’ and
the union, u+.dUni is ‘t1, t2, t3, t4’.

5 GRP-TOPK Approach

In this approach, we assume that the top-k objects for all
users are computed as a first step to answering a MaxST

Finding the optimal location and keywords in obstructed and unobstructed space 7

Algorithm 2: SELECT CANDIDATE(U,L,W,ω,k, p)
2.1 Initialize a max-priority queue QL.
2.2 Bp←∅.
2.3 for each ` ∈ L do
2.4 if CS↑(`,u+)≥ Rk(u+) then
2.5 for each u ∈U do
2.6 if CS↑(`,u)≥ Rk(u) then
2.7 B↑`← u
2.8 if CS↓(`,u)≥ Rk(u) then
2.9 B↓`← u

2.10 ENQUEUE(QL, `, |B↑`|)
2.11 while QL 6=∅ do
2.12 max`← DEQUEUE(QL)
2.13 if |B↑max`|< |Bp| then break
2.14 else if |B↓max`| ≥ |Bp| then
2.15 p.l← max`
2.16 else
2.17 W ′← Find best candidate keyword set for max` using

approximate or exact method.
2.18 p′.l = max`; p′.d =W ′

2.19 if |Bp′ |> |Bp| then
2.20 p.l← max`; p.d←W ′

2.21 return p

query. In our earlier work on this problem [7], an efficient
technique to jointly process the top-k object computation for
all users in U using a super-user was presented. Other ap-
proaches to efficiently batch process multiple top-k spatial-
textual queries (users) could also be used [6]. Let the sim-
ilarity score of the k·th ranked object for each user u ∈U ,
Rk(u), and the k·th best lower bound similarity score with
respect to the super-user, Rk(u+) such that for any user u ∈
U , Rk(u+) ≤ Rk(u). As the details of an efficient solution
to jointly compute the top-k objects for the users is avail-
able was previously described by Choudhury et al. [7], we
proceed to present our method to efficiently find the best
candidate combinations.

5.1 Candidate selection

As shown in Lemma 1, even when there is only a single
candidate location, the candidate keyword selection process
alone is NP-hard. Therefore, we propose a spatial-first prun-
ing technique to select the best candidate combination of a
location and a set of keywords.

For each candidate location `, the idea is to estimate the
number of users that can be in Bp if p.l = ` for the specific
object p. Then the candidates are considered in a best-first
manner so that the most promising candidates are processed
first. Several pruning strategies are used during this process,
which are described now.

Algorithm 2 shows the pseudocode of the steps to select
the candidate location and keywords for the MaxST problem.
The pruning techniques used in this process use an upper

and a lower bound estimation of relevance of the candidate
combinations with respect to the users.
Upper bound estimation. For each ` ∈ L, the combined
spatial-textual upper bound similarity is computed in two
steps: (i) for the super-user u+, denoted as CS↑(`,u+) such
that for any user u ∈ U , the similarity between p and u is
at most the CS↑(`,u+), when p.l = `; and (ii) for each in-
dividual u ∈ U such that the similarity CS(p,u) is at most
CS↑(`,u), when p.l = `.

When using Euclidean distance for spatial similarity, the
spatial upper bound SS↑(`,u+) is computed from Eqn. 3 us-
ing the minimum Euclidean distance between ` and u+, as
u+.l is the MBR for all of the users. For text relevance, a
straightforward way is to consider the relevance as 1 (max-
imum), when the score is normalized within [0,1]. But we
can achieve a tighter bound using the following lemma:

Lemma 2 Let W ↑ be the set of ω number of keywords of
the highest weights from (u+.dUni∩W). The text relevance
between p.d and a user u ∈U after adding at most ω num-
ber of candidate keywords is always less than or equal to the
score TS((p.d∪W ↑),u+.dUni),

TS↑(p,u+) = TS((p.d∪W ↑),u+.dUni) .

Proof The text relevance between a user u and p can change
by adding only the keywords that are present in u.d. As
u+.dUni is the union of the text of all the users in U , the text
relevance w.r.t. any user u can be increased only by adding
the candidate keywords that are present in u+.dUni. Let w1
and w2 be two keywords in W ↑ where the weight of w1 is
greater than the weight of w2 and ω = 1. If a user u has
both w1 and w2 in the text description, then from Eqn 2, the
text relevance of p w.r.t. u obtained by adding w1 must be
equal or greater than the text relevance obtained by adding
w2. Even if a user u does not have all the keywords of W ↑ in
u.d, the lemma still provides an upper bound estimation of
text relevance that can be achieved by adding ω number of
candidate keywords. ut

So, the upper bound estimation of relevance of a candi-
date location w.r.t. the super-user u+ is

CS↑(`,u+) = α ·SS↑(`,u+.l)+(1−α) ·TS↑(p,u+) .

Similarly, an upper bound estimation of a candidate lo-
cation ` w.r.t. any particular user u can be computed as

CS↑(`,u) = α ·SS↑(`,u.l)+(1−α) ·TS↑(p,u) .

Here, TS↑(p.d,u.d) = TS(p.d∪Wu
↑,u.d), where Wu

↑ is the
set of ω number of keywords of the highest weights from
(u.d∩W).
Lower bound estimation. For text relevance, the minimum
score is computed from the original text description of p.

8 Farhana Murtaza Choudhury1 et al.

The spatial lower bound is computed using the maximum
Euclidean distance. So, the lower bound estimation of ` ∈ L
w.r.t. u+ is:

CS↓(`,u+) = α ·SS↓(`,u+.l)+(1−α) ·TS↓(p.d,u+.dInt) .

Pruning techniques. We denote the set of users that can
be in Bp for p.l = ` as B↑`, and the set of users that are
definitely in Bp when p.l = ` as B↓`. The number of users
that find p as a top-k object is initialized as an empty set. The
steps and the pruning strategies employed in Algorithm 2
can be summarized as follows:

– Initialize necessary user lists: As the similarity score of
the k · th ranked object for any user u, Rk(u) satisfies the
condition Rk(u+) ≤ Rk(u). Therefore if CS↑(`,u+) <
Rk(u+), then no user can have p as a top-k object for the
candidate location `. Otherwise, CS↑(`,u) is computed
for each user. If CS↑(`,u)≥Rk(u), then u is included in
B↑`. A list of such users, B↑` is obtained for each candi-
date location `, (Lines 2.6-2.7). For each `, if the lower
bound similarity CS↓(`,u) ≥ Rk(u), then u is added to
the corresponding list B↓` (Lines 2.8-2.9).

– Here, a best-first traversal technique is exploited. A max-
priority queue QL of candidate locations is maintained
according to the cardinality |B↑`|, so that the most promis-
ing candidates are processed first. In each iteration the
location, max`, with the maximum |B↑`| is selected
(Line 2.12).

– As the set B↑` for the candidates are maintained based
on an upper bound, the cardinality of B↑max` is less than
the best |Bp| found so far. So, a better tuple from the
subsequent entries of QL is not possible. Thus, the com-
putation can be early terminated (Line 2.13).

– Since all users in B↓` have p as a top-k object for p.l =
max`, irrespective of the keyword selection, a check to
see if |B↓max`| is greater than the current best |Bp| can
be used to avoid computing the candidate keywords for
this condition (Lines 2.14-2.15).

– Otherwise, the best candidate keyword set, W ′ is deter-
mined for max`. An approximate or an exact method
presented in the following section is used to select W ′

(Line 2.17). p is updated with max` and W ′ accordingly
(Lines 2.19-2.20).

5.2 Candidate keyword selection

Recall that the best candidate keyword W ′ set that provides
the maximum cardinality of Bp has to be determined for
p.l =max` (Line 2.17) in Algorithm 2. As this is an NP-hard
problem, an approximation algorithm is first developed. An
exact method that uses several pruning strategies is also pre-
sented, which can serve as a naive baseline.

Algorithm 3: APPROXIMATE (Bmax`,W,ω,k)
3.1 p′.l = max`; W ′←∅; CU ←∅
3.2 for each w ∈W do
3.3 for each u ∈Bmax` do
3.4 W ↑

w,u← set of ω highest weighed keywords from
W ∩u.d and w∩W ↑

w,u 6=∅
3.5 p′.d =W ↑

w,u
3.6 if CS(p′,u)> Rk(u) then
3.7 LWw← u
3.8 while |W ′| ≤ ω do
3.9 w← the keyword from W with the maximum |LWw|

3.10 W ′←W ′∪w
3.11 CU ←CU ∪LWw
3.12 W ←W −w
3.13 for each w ∈W do
3.14 LWw← LWw−CU
3.15 return W ′

5.2.1 Approximate algorithm

The candidate keyword selection problem was shown to be
NP-hard in Lemma 1 using a reduction from the Maximum
Coverage (MC) problem. A greedy algorithm with the best-
possible polynomial time exists with (1−1/e) ' 0.632 ap-
proximation ratio for the MC problem [9]. Inspired by this
algorithm, we propose an approximate algorithm to select
the candidate keywords in our algorithm when p.l = max`
(Line 2.17 of Algorithm 2). However, the assumption of the
solution in [9] is that the objective function needs to be sub-
modular. As the objective function of MaxST problem, which
is to maximize the number of RkNNs is non-submodular,
thus the approximation ratio of that solution does not hold.
We present the steps of the approximate approach in Algo-
rithm 3 where some preprocessing is required.

Preprocessing. For each w ∈W , we generate a list LWw of
the users such that these users can be in Bp based on an up-
per bound estimation, where p.d =W ′ and W ′∩w 6=∅. As
the B↑max` is already computed based on this upper bound,
only the users in B↑max` need to be considered for this step.
Let W ↑

w,u be a set of the ω highest weighed keywords from
W ∩ u.d such that W ↑

w,u ∩w 6= ∅. When p.d = W ↑
w,u and

p.l = max`, a user u can be in Bp if CS(p,u)≥Rk(u). Such
users are included in the corresponding list, LWw for each
w ∈W (Lines 3.2 - 3.3).

Approximating the best candidate keyword set. Recall
that in the MC problem, the objective is to find a subset S′ ⊆
S such that |S′| ≤ m and the number of covered elements by
S′, |∪Si∈S′ Si| is maximized. In our case, the collection of the
sets are the collection of LWw for each w and m is ω . The
greedy approach of MC is applied in our problem to find
the best set of candidate keywords W ′ of size ω such that
| ∪w∈W ′ LWw| is maximized. This set W ′ is returned as the
best candidate keyword set for the location max` (Lines 3.8
- 3.15).

Finding the optimal location and keywords in obstructed and unobstructed space 9

Algorithm 4: EXACT(U,max`,B↑max`,W,ω,k)
4.1 WU←

⋃
u∈B↑max`

(u.d)

4.2 W ′←∅; best← 0
4.3 if |W ∩WU| ≤ ω then
4.4 W ′← (W ∩WU)
4.5 else
4.6 C← combinations of ω number of keywords from W ∩WU.
4.7 p′.l = max`
4.8 for each c ∈C do
4.9 p′.d = c

4.10 for each u ∈B↑max` do
4.11 if CS↓(max`,u)≥ Rk(u) then
4.12 Bp′ ← u
4.13 else if c∩u.d 6= /0 then
4.14 if CS(p′,u)≥ Rk(u) then Bp′ ← u
4.15 if |Bp′ |> best then
4.16 W ′← c; best← |Bp′ |
4.17 return W ′

The approximate approach greedily selects the keyword
with the highest number of uncovered RkNNs in each itera-
tion, until ω keywords are selected. Thus the iteration exe-
cution number of the approximate algorithm is ω .

5.2.2 Exact algorithm

The number of candidates can be small in some applica-
tions. Moreover, the search space can be pruned using sev-
eral strategies when selecting the candidate keyword set.
This motivates us to develop an exact algorithm for select-
ing the best keyword set W ′ of the MaxST query. The pseu-
docode is presented in Algorithm 4 and the pruning tech-
niques are now explained.

– Pruning users: According to the definition of CS↑(`,u),
only the users in B↑max` can have p as a top-k object
when p.l = max`. So only the users in B↑max` must be
considered.

– Pruning candidate keywords: Let the union of the text
description of the users in B↑max` be WU (Line 4.1).
Only the candidate keywords that are contained in at
least one of those users, W ∩WU, are necessary.

– Let C be the set of the combinations of ω number of
keywords from W ∩WU. For a keyword combination c∈
C, only those users where c∩u.d 6=∅ are processed.

– Early termination: If |W ∩WU| ≤ ω , this is the only
possible candidate keyword set. So the process termi-
nates and W ∩WU is returned as the best candidate key-
word set for max` as shown in Lines 4.3-4.4.

– If the lower bound relevance, CS↓(max`,u) ≥ Rk(u),
then u is included in Bp′ , where p′.l = max` and p′.d
is the candidate keyword combination c currently under
consideration (Lines 4.11 - 4.12). If the cardinality of
Bp′ is greater than that of the current best keyword com-
bination, the current best is updated (Lines 4.15 - 4.16).

6 INDIV-U approach

Instead of computing the top-k objects of each of the users as
the GRP-TOPK approach, the idea of the INDIV-U approach
is to estimate the number of objects with a higher similarity
than each candidate w.r.t. each u ∈U with a single traversal
on the objects. This number is used to prune the users and
the candidates that cannot affect the result. As the steps of
the algorithm relies on computing the similarity estimations
of the objects w.r.t. the users, we first present the similarity
bounds, and then we present the steps of our algorithm.

6.1 Similarity bounds of an MIR-tree node of objects

We use each node of the MIR-tree to estimate the similarity
of the objects stored in that node. Here we present an upper
and a lower bound of similarity estimation of a node E of the
MIR-tree w.r.t. (i) the super-user and (ii) an individual user u.
These bounds are then used to facilitate the pruning of the
objects nodes, and pruning of the users from consideration.
The maximum spatial-textual similarity between any node
E of the MIR-tree and the super-user u+ is computed as

CS↑(E,u+) = α ·SS↑(E.l,u+.l)

+(1−α) ·TS↑(E.d,u+.dUni) ,

where SS↑ is the maximum spatial similarity computed from
the minimum Euclidean distance between the two MBRs us-
ing Eqn. 3, and TS↑ is the maximum textual similarity be-
tween E.d and the union of the keywords of the users, and
u+.dUni is computed by

TS↑(E.d,u+.dUni) = ∑
t∈u+.dUni∩E.d

www↑(E.d, t) ,

where www↑(E.d, t) is the maximum weight of the term t in the
associated document of node E. As described in Section 4,
if E is a non-leaf node, www↑(E.d, t) is the maximum weight
in the union of the documents contained in the subtree of E.
Otherwise, www↑(E.d, t) is the weight of term t in document
E.d computed using Eqn 2.

We now present a lemma that enables us to estimate an
upper bound on the relevance between any user u ∈U , and
any object node E using the super-user u+, where E is a
node of the MIR-tree.

Lemma 3 ∀u ∈ U, CS↑(E,u+) is an upper bound estima-
tion of CS(E,u). For any object node E, CS(E,u)≤CS↑(E,u+).

Proof Recall that the u+.l of u+ is the MBR of the locations
for all of the users in U . For an object node E in the MIR-tree,
SS↑(E,u+) is computed from the minimum Euclidean dis-
tance between the two MBRs of E and u+.l. As the location

10 Farhana Murtaza Choudhury1 et al.

u.l of any user u ∈U is inside the rectangle u+.l, the value
SS(E,u) must be less than or equal to SS↑(E,u+). For tex-
tual similarity, as u+.dUni=∪u∈U u.d, the maximum textual
similarity score between any user u∈U , and any object node
E that can be achieved is TS↑(E,u+) from Eqn 2. Since
the spatial-textual score CS(E,u) is the weighted sum of the
corresponding spatial and textual scores, ∀u ∈U , the score
CS(E,u) must also be less than or equal to CS↑(E,u+). ut

Lemma 3 shows that CS↑(E,u+) is a correct upper bound
estimation for relevance between a node E of the MIR-tree,
and any u ∈ U . Similarly, a lower bound relevance can be
computed as: CS↓(E,u+) = α · SS↓(E.l,u+.l) + (1− α) ·
TS↓(E.d,u+.dInt), where SS↓ is computed from the maxi-
mum Euclidean distance between the two MBRs, TS↓ is the
minimum textual relevance between E and u+.dInt is com-
puted using the minimum weights of the terms in E. Simi-
lar to the upper bound estimation, for the lower bound, the
property ∀u ∈U,CS(E,u)≥ CS↓(E,u+) always holds.

6.2 Algorithm

We present our approach that avoids computing the top-k
object for users that do not affect the final result. Here, we
apply a spatial-first strategy as well. Algorithm 5 presents
the pseudocode of the approach. Recall that the set of users
that can be in Bp for p.l = ` is denoted as B↑`, and the set
of users that are definitely in Bp when p.l = ` as B↓`. The
algorithm works as follows:

– Initialization: For a candidate location `∈ L, B↓` is ini-
tialized with an empty set and B↑` is initialized with the
set U (Line 5.6). Let LU be the set of the users that are
in B↑` of at least one candidate ` ∈ L, which is also ini-
tialized with all the users in U . For each user u, a priority
queue LOu is maintained to track the current top-k ob-
jects of u found so far. A separate priority queue LS is
also maintained for the super-user to track k objects with
the best lower bound similarity found so far.

– Lines 5.11-5.19 show how LS and LOu for each user
u are filled with k objects with the highest lower bound
similarity values found so far. The actual objects are used
instead of object nodes in LS and each LOu for better rel-
evance estimations. The corresponding values of Rk(u)
and Rk(u+) are also updated.

– Pruning object nodes using the super-user: If the up-
per bound similarity CS↑(E,u+) is less than the current
Rk(u+), then E cannot contain any object that can be a
top-k object for any users in U (Line 5.26). Otherwise,
the upper bound similarity CS↑(E,u) is computed w.r.t.
each user u ∈ LU.

– Pruning object nodes for individual user: Similarly, if
CS↑(E,u) is less than Rk(u), then E for u does not need

Algorithm 5: INDIV-U (O,U,L, p,k,MIR-tree)

5.1 Initialize max-priority queue QL, QE.
5.2 Initialize a min-priority queue LS.
5.3 Initialize an array LOu of min-priority queues for each u ∈U .
5.4 LU←U
5.5 for each ` ∈ L do
5.6 B↓`←∅; B↑`←U
5.7 〈`,W ′〉best ←∅; E←MIR-tree(root)
5.8 ENQUEUE(QE,E,CS↓(E,u+))
5.9 while QE 6=∅ do

5.10 E← DEQUEUE(QE)
5.11 if E is an object then
5.12 if |LS|< k ‖ CS↑(E,u+)≥ Rk(u+) then
5.13 ENQUEUE(LS,E,CS↓(E,u+))
5.14 Update Rk(u+)
5.15 for each u ∈ LU do
5.16 next← true
5.17 if |LOu|< k ‖ CS↑(E,u)≥ Rk(u) then
5.18 ENQUEUE(LS,E,CS↓(E,u))
5.19 Update Rk(u)
5.20 for each ` ∈ L do
5.21 if u is in B↑` & |LOu| ≥ k &

CS↑(`,u)< Rk(u) then
5.22 Remove u from B↑`
5.23 else next← false
5.24 if next is true then
5.25 Remove u from LU
5.26 else if |LS|< k ‖ CS↑(E,u+)≥ Rk(u+) then
5.27 for each element e of E do
5.28 for each u ∈ LU do
5.29 if |LOu|< k ‖ CS↑(E,u)≥ Rk(u) then
5.30 ENQUEUE(QE,e,CS↓(e,u+))
5.31 break
5.32 for each ` ∈ L do
5.33 for each u ∈B↑` do
5.34 if CS↓(`,u)≥ Rk(u) then B↓`← u
5.35 ENQUEUE(QL, `, |B↑`|)
5.36 Execute Lines 2.11- 2.21 of Algorithm 2.

to be considered. If E is not needed for any of the users
currently in LU, the subtree rooted at E can be pruned
from further consideration (Lines 5.27 - 5.29).

– Pruning users for candidate locations: If the upper
bound similarity CS↑(`,u) of a candidate ` w.r.t. a user
u is less than the current Rk(u), then u cannot be in B↑`
for p.l = `. If u is discarded from the B↑` for all of the
candidates, then u is removed from LU as well. Com-
puting the top-k objects for such users can be avoided
(Lines 5.20 - 5.25).

– The set of users that are definitely an RkNN for p.l =
`, B↓`, are found using their corresponding Rk(u) and
CS↓(`,u) values (Lines 5.32 - 5.34).

If a node E cannot be pruned, the entries of E are re-
trieved and placed in the queue. As traversal down the tree
continues, the similarity bounds become closer to the actual
values. When the leaf nodes are reached, the values for the
actual objects are computed instead of nodes that cannot be

Finding the optimal location and keywords in obstructed and unobstructed space 11

u1 u2 u3 u4 u7u5 u6

R1 R2

R5 R6

R3 R4

R1 R2 R3 R4

R5 R6

IntUni7 R7

122 2

4 3

IntUni1 IntUni2 IntUni3 IntUni4

IntUni5 IntUni6

ID Int. Union
(t1t2t3t4) (t1t2t3t4)

IntUni1 1 0 1 1 1 0 1 1
IntUni2 1 0 0 0 1 1 1 0
IntUni3 1 0 0 0 1 1 0 1
IntUni4 1 0 0 1 1 0 0 1
IntUni5 1 0 0 0 1 1 1 1
IntUni6 1 0 0 0 1 1 0 1
IntUni7 1 0 0 0 1 1 1 1

Fig. 4: Example of Modified IUR-tree (MIUR tree)

Algorithm 6: INDEX-U (O,L, p,k,MIR-tree,MIUR-tree)

6.1 Initialize a max-priority queue QL.
6.2 EU ←MIUR-tree(root)
6.3 Compute Rk(EU).
6.4 ROEU← List of objects o with CS↑(o,EU)≥ Rk(EU) (using

Algorithm 1 of Choudhury et al. [7])
6.5 for each ` ∈ L do
6.6 if CS↑(`,EU)≥ Rk(EU) then B↑`← EU
6.7 ENQUEUE(QL, `, |B↑`|)
6.8 while QL 6=∅ do
6.9 max`← DEQUEUE(QL)

6.10 if B↑` 6=∅ then
6.11 EU← node in B↑` with maximum users
6.12 for each eu ∈ EU do
6.13 Update Rk(eu) by executing Lines 2.3 - 2.11 of

Algorithm 2 by Choudhury et al. [7]
6.14 Update ROeu
6.15 for each ` ∈ L do
6.16 if B↑` contains EU ‖ CS↑(`,eu)≥ Rk(eu)

then B↑`← eu
6.17 Update QL
6.18 else
6.19 Execute Lines 5.34- 5.36 of Algorithm 5.

pruned, and the objects that can be a top-k object of the nec-
essary users are found. After the traversal of the MIR-tree,
the list of users is obtained, B↑` and B↓` for each candidate
location, and then the rest of the candidate selection process
is the same as the GRP-TOPK approach (Lines 2.11- 2.21 of
Algorithm 2).

7 INDEX-U approach

In the INDIV-U approach presented in the previous section,
the users are pruned by checking them individually against
the candidates and the retrieved objects. In this section we
propose a new index, the Modified IUR-tree (MIUR-tree) to
store the users, where the motivation is to improve efficiency
by applying the pruning techniques over a hierarchical struc-
ture of the users instead of the individual users.
Modified IUR-tree (MIUR-tree). An MIUR-tree is essen-
tially an R-tree where each node is augmented with a refer-
ence to the union and the intersection vector of the keywords
appearing in the subtree. Each node R contains a number of

entries, each consists of a reference to a child node, the MBR
of all entries of the child node, and an identifier of a vector
of keywords. If R is a leaf node, this is the identifier of the
vector of the text description of an object o. Otherwise, it
has a reference to the union and intersection of all text de-
scriptions in the entries of the child node. It also contains the
number of actual objects stored in the subtree rooted at R.

Fig. 4 illustrates the MIUR-tree for U = {u1,u2, . . . ,u7}
of Fig. 2b, where the MBRs are constructed according to
the IR-tree (not shown in the figure), and the table shows the
text vectors of the nodes for the users presented in Table 3.
Algorithm. The pseudocode of the approach is presented
in Algorithm 6. The root of the MIUR-tree is essentially the
same as the super-user u+ in the previous methods. The
MIR-tree of the objects is traversed for the root node, EU of
the MIUR-tree, to obtain the k·th best lower bound Rk(EU)

and the list RO of the object, such that each o∈RO, CS↑(o,EU)

≥ Rk(EU) (Lines 6.3 - 6.4). The details of the traversal are
explained in Algorithm 1 of our previous publication [7].

For each ` ∈ L, a list B↑` is maintained, but unlike Al-
gorithm 2, B↑` may now contain user nodes. In each it-
eration, the location max` is selected with the maximum
|B↑`|. If there is a user node in a B↑`, the number of actual
users stored in that subtree is used to compute the number
of users in B↑`. The following steps are executed to access
the MIUR-tree-

1. If there is any non-leaf node in B↑max`, the non-leaf node
EU ∈B↑max` is dequeued with the maximum number of
users stored in the subtree.
(a) For each element eu ∈ EU , Algorithm 2 in the work

[7] is executed to update Rk(eu) using the list of ob-
jects RO(EU) of its parent node. The list RO(eu) is
also updated (Lines 6.13 - 6.14).

(b) For each ` ∈ L including max`, if EU ∈ B↑`, B↑` is
updated with the users eu ∈ EU based on the corre-
sponding upper bound scores. The priority queue QL
is also updated. In this way, a node of the MIUR-tree
must only be accessed at most once.

2. Otherwise, the rest of the algorithm to find the best can-
didate location and keyword set combination of the MaxST
query is same as Lines 5.34- 5.36 of Algorithm 5.

In this best-first method, the users that are in the list B↑`
of the most promising candidates are accessed first. In ad-
dition, the top-k objects are not computed for the users that
are not necessary to determine the result candidate combi-
nations.

8 Adding visibility requirements

In this section we extend our solutions to support answer-
ing the MaxST query in obstructed space, where the spatial
relevance of an object is its visibility w.r.t. a user.

12 Farhana Murtaza Choudhury1 et al.

Challenges with visibility measures. The additional chal-
lenge of the visibility measure is that the visibility of an
object o w.r.t. a user u depends on their locations, and the
locations of the other objects (obstacles) in between them,
where the spatial proximity (e.g. Euclidean distance) of o
w.r.t. u depends only on their own locations. Therefore, to
incorporate the visibility measure in the solutions presented
in Sections 5 - 7, we seek techniques that:

– Efficiently estimate and calculate the visibility of an ob-
ject or a candidate without requiring the retrieval of other
objects whenever possible.

– Pruning of unnecessary objects, candidates, and users
based on visibility.

Visibility extension overview. At the highest level, the fol-
lowing modifications are made in the solutions of Sections 5
- 7 to incorporate visibility and achieve the above goals:

1. The MIR-tree is extended, denoted as an OIR-tree, to store
the set of objects O, along with some additional infor-
mation to support visibility computation. Specifically, an
auxiliary Quadtree structure is maintained to identify the
portions of space that are visible to a user, and associate
that information with the OIR-tree. A space partitioning
technique is used to construct the auxiliary Quadtree to
facilitate finding the visible segments of an object or a
candidate location.

2. As our proposed solutions rely on estimating the simi-
larity bounds, the visibility estimation bounds of a can-
didate and an object o w.r.t. a user (and super-user) using
the nodes of the OIR-tree are presented. These bounds do
not require the retrieval of the other objects in between
o and the user to estimate visibility, which is a major
contribution of this work.

3. Several additional pruning techniques are also presented
which use visibility to prune unnecessary objects, users,
and candidates.

In Section 8.2, the extension of our proposed indexes to
incorporate the visibility measure is presented. The modi-
fications of the algorithms to answer the MaxST query for
visibility are explored in Section 8.3.

8.1 Preliminaries

In this section, the notion of an obstructed region of a user
is presented, which is crucial to measure the visibility.

Definition 2 Obstructed region (OR(u)). Given a set of
obstacles O in space, an obstructed region w.r.t. a user u,
OR(u) consists of all the points in the space such that a
straight line connecting any of these points and u.l passes
through at least one object o ∈ O.

u

o1
o2

o3 o4

o5

Fig. 5: Obstructed region

u2

u3
u1

1

o1

9 10

11 12

6

7 8

o2

o3
3 4

Fig. 6: Auxiliary Quadtree construction

0

1 2 3 4

9 10 11 12

5 6 7 8

Cell ID OL(c)
c2 u1
c5 u2
c6 u2
c10 u3
c12 u3

Fig. 7: Auxiliary Quadtree partitioning and user list

Based on the definition, an important observation is: If
an object is completely inside the obstructed region of a user
u, no point of that object is visible from u. As shown in
Fig. 5, the shaded region is the obstructed region of the user
u due to the presence of the objects o1, . . . ,o5. The visible
portions of the objects are represented by black, and the ob-
structed portions (the portions that are inside the obstructed
region) are represented with red. As the object o4 is com-
pletely inside the obstructed region of u, o4 is not visible at
all from u.

8.2 Index Structure

First we present the construction of the auxiliary Quadtree,
and then the details of the modifications to the MIR-tree to
construct a OIR-tree.

8.2.1 Auxiliary Quadtree

The purpose of this auxiliary structure is to quickly find
which part of an object or a candidate is obstructed from

Finding the optimal location and keywords in obstructed and unobstructed space 13

a user. To achieve this goal, the obstructed region OR(u) for
each user u ∈U is first constructed. The space is then par-
titioned using a Quadtree. For each cell ζ of the Quadtree,
a list of users, OL(ζ), is maintained based on the visibility
of ζ from those users. The idea is that the visibility of an
object o w.r.t. any user can be estimated from the cells with
which o.l intersects. Moreover, if an object is completely in-
side cells that are obstructed from a user u, that object can
be safely discarded from consideration for u.

A top-down approach is used to populate the list of users
OL(ζ) associated with each cell ζ of the Quadtree. Specif-
ically, OL(ζ) consists of the ID of the users, such that for
each user u ∈ OL(ζ), ζ is completely inside the obstructed
region OR(u). Starting from the root, such users are found
and added in the list OL(ζ) of the corresponding cell ζ . If
a user u is included in OL(ζ) of a cell ζ , it implies that all
the descendent cells of ζ are also contained inside OR(u).
Therefore repeatedly storing u for the descendants of that
cell ζ is not required. If an additional user u′ is found for
which a cell ζ is completely inside OR(u′), but u′ is not in-
cluded in any OL of the ancestor cells of ζ , only then is
u′ included in OL(ζ). This is illustrated with the example
shown in Fig. 6 and Fig. 7.

Example 3 Let the space be partitioned using a Quadtree
into 10 cells as in Fig. 6. The list of users OL(ζ) for the
cells with at least one entry are shown in the table of Fig. 7.
Here, the cell c10 is completely obstructed from the users
u1,u2,u3, where u3 is stored in the user list of c9, user u2 is
stored in the user list of its parent cell c5, and so on.

Separate from the Quadtree, the information of the ob-
structed region (the collection of polygons) for each user is
also stored. Each leaf level cell of the Quadtree is associ-
ated with a pointer to the corresponding obstructed regions
that intersect with the cell. These obstructed regions are later
used to compute the exact visibility of the necessary objects
and candidates.
Auxiliary Quadtree partitioning. The purpose of main-
taining this structure is to efficiently find the visible seg-
ments of an object w.r.t. a user. As the visibility of an ob-
ject o is calculated by taking the summation of the visibility
of its small segments ∆o.l of length at most ε , this value is
used to direct the partitioning process. Specifically, if a cell
ζ intersects with or contains any object o ∈O, then ζ is fur-
ther partitioned until the diagonal length of the cell ζ is less
than or equal to the threshold ε .

8.2.2 OIR-tree

The set of objects O needs to be indexed in a way that the
visibility of an object w.r.t. any user can be estimated in an
efficient way. We extend the MIR-tree (Section 4) to support

the visibility and textual similarity computation of our prob-
lem, as close-by objects (objects in an MBR) are likely to
have a similar visibility value from a user, and it is efficient
to estimate the distance, and angle (discussed in details later)
using the MBRs. We refer to this index as an OIR-tree. The
OIR-tree is constructed in a similar manner to the original
MIR-tree, where the MBRs of the line segments of the ob-
jects o.l in O are used to construct the underlying R-tree. In
addition, the following information is maintained:

– We maintain a reference to a cell of the auxiliary Quadtree
with each node E of the OIR-tree, specifically, the cell ζ

at the lowest level such that E is completely inside ζ .
The idea is that if a node E is completely inside a cell ζ

of the Quadtree, that means all of the objects stored in E
are completely obstructed from the users in OL(ζ) (and
the users stored in the OL of the ancestors of ζ), so E
cannot contain any top-k object of those users.

Example 4 In Fig. 6, let the minimum bounding rectan-
gle of the object o3 be a node of the OIR-tree. This node
intersects with the cells c7 and c8, but the cell c2 is the
lowest level cell for which this node is completely inside.
Therefore, the reference to cell c2 is associated with this
node.

– The maximum and the minimum of the lengths of the
objects stored in the subtree rooted at node E, denoted
as len↑(E) and len↓(E), respectively, are stored.

Angle lookup table. A lookup table is maintained with the
angle of each object o ∈ O w.r.t. the Cartesian X-axis, de-
noted as o.θ . This angle is later used to derive the angle of
an object w.r.t. any user in query time.

8.3 Visibility bounds

Here we present an upper and a lower bound of visibility
estimation of an object w.r.t. a user and the super-user us-
ing the node of the OIR-tree. Similar to the previous instance
of MaxST with Euclidean distance as spatial similarity, these
bounds are used to limit the number of top-k object compu-
tations of the necessary users, and facilitate the pruning of
the candidates. We also present bounds for the candidates
to apply in the algorithms. The maximum (minimum) tex-
tual similarity TS↑(E.d,u.d) (TS↓(E.d,u.d)) is computed
from the maximum (minimum) TF-IDF value of the terms
in E.d ∩ u.d in the same way as described in the previous
sections.

8.3.1 Visibility bounds of an OIR-tree node of objects

Here, we present how to compute the maximum (minimum)
visibility value of any object in a node E of the OIR-tree w.r.t.

14 Farhana Murtaza Choudhury1 et al.

θ {Δo
.l

τ

(a) Length

β

{m
d
↓ (u

,m
)

perpendicu
lar

dist
ance

u

θ

(b) Angle

β

m

perpendicu
lar

dist
ance

u+

θ

(c) Angle w.r.t. u+

Fig. 8: Upper bound calculation using angle

a user u such that ∀o ∈ O,SS↑(E.l,u.l)≥ SS(o,u)
(SS↓(E.l,u.l)≤ SS(o,u)).
Upper bound visibility for a user. If a node E is com-
pletely inside the obstructed region of a user u, all the objects
in E are also completely obstructed from u. Such a node
E cannot contain any top-k object of u. As the visibility of
an object depends on its visible length, distance, and angle
w.r.t. a user, a straightforward approach to compute the up-
per bound visibility of a node E for u is to use the maximum
length of any object stored in E, VL↑(E.l,u.l) = len↑(E)
as the visible length. The minimum Euclidean distance be-
tween u and E is used, and the angle is 90o (the angle for
which the perceived length of any object is maximum). Al-
though this bound is easy to compute, it is a loose bound,
as the actual maximum visible length of any object in E can
be very different from len↑(E) as a result of object obstruc-
tion. Thereby, our techniques to compute a upper bound that
estimates a tighter visible length is now presented.

From the reference of the Quadtree cell associated with
E, first the leaf level cells of the Quadtree that intersect with
E are found. Recall that a cell ζ is completely obstructed
from the users in OL(ζ) and the users in the lists OL of the
ancestors of ζ . Let χE,u be the set of the leaf level cells of
the Quadtree that are both visible from u and intersects with
at least one object in E. The angle lookup table that keeps
the angle o.θ of each object o with the Cartesian x-axis is
used to compute tighter upper bound estimations as follows:

– First o.θ is used to better estimate the maximum length
of a segment ∆o.l that is contained in a cell xi ∈ χE,u.
The process is demonstrated using Fig. 8a. Let the length
of the larger side of cell xi be τ . As the length of a
line segment with a slope inside a rectangle is maximum
when it goes through a corner of a larger side of xi, the
maximum length of ∆o.l can be calculated as

∆o.l = τ/coso.θ .

– Now, a tighter upper bound of the angle between o.l and
u is estimated instead of using 90o. Recall Section 8.1,
the small segments ∆o.l of size ε are partitioned such
that the orientations of all points on ∆o.l w.r.t. to a user u
can be considered as visually similar. Therefore, a point
over ∆o.l is chosen, m. The mid-point of the line seg-
ment might be chosen assuming that it goes through a

corner of a larger side of xi, but choosing any other point
will have an insignificant visual difference. Then the an-
gle β = ∠(∆o.l,u.l) can be calculated as

sinβ = ddd⊥(u.l,o.l)/ddd ↓(u.l,o.l) .

The calculation is shown with Fig. 8b, where the perpen-
dicular distance of o.l from u is ddd⊥(u.l,o.l).

– Finally, the minimum Euclidean distance between cell xi
and u.l is used instead of the distance between E and u,
the value of β as the upper bound of ∠(∆o.l,u.l), and the
value of ∆o.l is computed to get VL↑

∆
(∆o.l,u.l) for an

individual segment. The VL↑(E,u) is obtained by taking
the summation of these values from the cells χE,u. If this
summation value is greater than the maximum length of
an object in E, len↑(E), then len↑(E) is taken as the up-
per bound visible length.

Upper bound visibility for the super-user. As the algo-
rithms to answer MaxST rely on the bounds of a node of ob-
jects for u+ to filter the objects and candidates efficiently, the
steps to compute the upper bound visibility of a node E w.r.t.
u+, SS↑(E.l,u+.l) such that ∀u∈ u+, ∀o∈E, SS↑(E.l,u+.l)≥
SS(o.l,u.l) is now presented.

Let χE,u+ be the set of the leaf level cells of the Quadtree
that intersect with at least one object o ∈ E and visible from
at least one user u ∈ u+. The upper bound w.r.t. u+ is com-
puted in a similar manner using χE,u+ . To calculate the upper
bound of the angle w.r.t. the super-user, the angle is com-
puted using the same technique mentioned above for each
of the four corner points of the MBR of u+. Let the max-
imum of these angles be β = ∠↑(o.l,u+), where β is be-
tween 0 and 90 degrees. The angle of a line segment ∆o.l
from any user location u inside the MBR of u+ will be less
than ∠↑(o.l,u+). This upper bound calculation of angle is il-
lustrated in Fig. 8c. The maximum visible length, the angle
upper bound, and the minimum Euclidean distance are used
to compute the final upper bound w.r.t. the super-user.
Lower bound visibility. Let χ̂E,u be the set of the leaf
level cells that are obstructed from u and intersects with
at least one object o ∈ E. The maximum length of a seg-
ment ∆o.l that is contained inside a cell x̂i ∈ χ̂E,u is com-
puted in the same manner as the upper bound calculation.
As these segments are obstructed, the sum of the maximum
lengths of ∆o.l from χ̂E,u represent the maximum length
of o.l obstructed from u. Therefore, if this maximum ob-
structed length of o.l is subtracted from len↓(E) (the mini-
mum length of any object in E), a lower bound of the visible
length of o.l is obtained. If this value becomes negative for
any o ∈ E, the lower bound visibility of E, SS↓(E.l,u.l) is
taken as 0. Otherwise, to get a lower bound on the angle,
first the angle β = ∠(∆o.l,u.l) is computed for the object
o that intersects with a cell xi ∈ χE,u as above. If multiple
objects intersect with xi then the minimum of their angles,

Finding the optimal location and keywords in obstructed and unobstructed space 15

∠↓(∆o.l,u.l), is used. The lower bound of the visible length,
the angle ∠↓(∆o.l,u.l), and the maximum Euclidean dis-
tances between E and u are used to compute lower bound
visibility with the Eqn. 5 and Eqn 4.
Lower bound visibility for the super-user. This bound is
calculated in the same way as for an individual user, except
that the calculation is done using the set χ̂E,u+ of the leaf
level cells that are obstructed from at least one user u ∈U ,
and intersecting with at least one object o ∈ E.

8.3.2 Visibility bounds of the candidates

Similar to the unobstructed instance of the MaxST problem,
the upper (lower) bound of a candidate is computed by as-
suming the maximum (minimum) text similarity that can be
achieved from the candidate keyword set and the keyword
constraints. Now we present the techniques to calculate the
upper and the lower bound visibility of a candidate location
` ∈ L w.r.t. a user u and the super-user.
Upper bound visibility. Let the set of the leaf level cells
that intersect with ` and visible from u be χ`,u. Note that the
diagonal length of these cells can be larger than ε . Unlike
the upper bound calculation for an object, the length of `

inside each cell xi ∈ χ`,u can be easily calculated using the
techniques to find the intersection points of a line segment
and a rectangle. For each xi, the length of ` inside xi, the
minimum distance between xi and u, and the actual angle
between the portion of ` inside xi and u is used to calculate
an upper bound of the visible length of that portion of `.
Finally, the sum of the upper bounds of visible lengths is
taken to get the upper bound of the visibility of ` w.r.t. u
using Eqn. 4.

To calculate the upper bound visibility w.r.t. u+, similar
to the calculation for an object, the set χ`,u+ of the leaf level
cells that intersect with ` and visible from at least one user
u∈U are obtained. Similarly, the upper bound of the angle is
the maximum of the angles calculated from the four corner
points of u+. Then the exact length of ` inside each cell xi ∈
χ`,u+ is computed. These values and the minimum distance
between ` and u+ are used to get the upper bound visibility
of a candidate w.r.t. the super-user.
Lower bound visibility. Let χ̂`,u be the set of the leaf level
cells that are obstructed from u and intersect with the can-
didate `. The length of ` that are contained inside each cell
x̂i ∈ χ̂`,u are computed. These obstructed lengths are sub-
tracted from the actual length of ` to find the visible length
of ` w.r.t. u. Then the lower bound is calculated using the
maximum Euclidean distance and the actual angle between
` and u. For the lower bound w.r.t. the super-user, the cal-
culation is done similarly, but using the set of the leaf level
cells that are obstructed from at least one user u ∈U .
Computing the final visibility of a candidate. If a can-
didate line cannot be pruned using the bounds, the actual

Table 4: Description of dataset

Property Flickr LA Yelp

Total objects 1,000,000 542,310 61,185
Total unique terms 166,317 52,731 266,869
Avg unique terms per object 6.9 8.5? 398.7
Total terms in dataset 6,936,385 274,577 77,838,026

?The avg unique terms of the objects (buildings) that are associated
with a text description.

visibility w.r.t. some users may need to be computed. Recall
from the construction of the auxiliary Quadtree that each
leaf level cell is associated with a pointer to the correspond-
ing obstructed regions (the collection of polygons) that in-
tersect with the cell. If the diagonal length of a cell xi ∈ χ`,u
is greater than ε , the obstructed regions of u are retrieved
that intersect with xi by following the pointer to find the seg-
ments of ` that are actually visible from u.

9 Experimental Evaluation

In this section, the experimental evaluation for our three pro-
posed algorithms are presented, (i) GRP-TOPK, (ii) INDIV-
U, and (iii) INDEX-U approach to process the MaxST query
for the two instances of spatial relevance in the ranking of an
object, (i) the Euclidean distance and (ii) the visibility. We
also compare our approaches with a straightforward base-
line, where the top-k objects of each user is computed indi-
vidually, and after some basic filtering, all the possible com-
bination of the candidates are checked against the users to
find the best candidate combination (Section 3).
Datasets and query generation. All experiments were con-
ducted on three real datasets, (i) the Flickr dataset 1, (ii) the
LA dataset 2, and (iii) the Yelp dataset 3.

The LA dataset contains the 2D footprint of 542,310
buildings in Los Angeles. The text description of 31,526
POIs are collected from Foursqure for this area, and each
text description is assigned to the corresponding building of
that POI.

For the Flickr dataset, a total of 1 million images that
are geotagged and contain at least one user specified tag
were extracted from the collection. The locations and tags
are used as the location and keywords of the objects. For the
experiments on visibility, the point locations are converted
to rectangles (representing building footprints), where the
distributions of the size of the rectangles follow the same
distribution of the LA dataset.

1 http://webscope.sandbox.yahoo.com/catalog.php?

datatype=i&did=67
2 http://egis3.lacounty.gov/dataportal/2011/04/28/

countywide-building-outlines
3 http://www.yelp.com.au/dataset_challenge

16 Farhana Murtaza Choudhury1 et al.

Table 5: Parameters

Parameter Range

k 5,10,20,50,100
α 0.1,0.3,0.5,0.7,0.9
No. of keywords per user, UL 1,2,3,4,5,6
No. of total unique keywords of users, UW 5,10,20,30,40
Users’ MBR as latitude × longitude, Area 1,2,4,8,16
No. of candidate locations, |L| 1,20,50,100,300
ω 1,2,3,4,5,6,7,8
No. of users, |U | 100,500,1K,2K,4K

The Yelp dataset contains information about businesses
in 10 cities. For each business, three types of information
are available: business location, business attributes, and user
reviews on businesses. The attributes and reviews for each
business are combined as the text description of that busi-
ness. Similar to the Flickr dataset, the point locations are
converted to building footprints for the visibility experiments.
Table 4 lists the properties of the datasets.

We used the above datasets to generate the set of queries
as follows. First, an area of a percentage of the dataspace
size (here, 4%) was chosen, and |U | number of objects in
that area are taken randomly. Let this set of objects be Ou.
The locations of the objects were used as the locations of the
users. Then, keywords with the highest TF-IDF score were
selected from Ou as the set of the user keywords, where UW
was the number of unique user keywords. These keywords
were distributed among the users such that each user had
|UL| number of keywords following the same distribution
of keywords of Ou. In this work, we generated 50 such sets
of users and reported the average performance.
Setup. All indexes and algorithms were implemented in
Java. The experiments were ran on a 24 core Intel Xeon
E5− 2630 running at 2.3 GHz using 256 GB of RAM, and
1TB 6G SAS 7.2K rpm SFF (2.5-inch) SC Midline disk
drives running Red Hat Enterprise Linux Server release 7.2
(Maipo). The Java Virtual Machine Heap size was set to
4 GB. All index structures are disk resident. The number of
postings in the inverted lists was set to 128, and the page
size was fixed at 1 kB for both indexes.

As multiple layers of cache existed between a Java appli-
cation and the physical disk, we report simulated I/O costs
in the experiments instead of physical disk I/O costs. The
number of simulated I/O operations is increased by 1 when
a node of a tree is visited. When an inverted list is loaded,
the number of simulated I/O operations is increased by the
number of blocks contained in the list. In the experiments,
the performance was evaluated using cold-start queries.

9.1 Performance evaluation

In this section, we evaluate and compare the performance of
the approaches by varying several parameters. The perfor-

mance evaluation of our proposed approaches consist of the
following two components:

– Computing the top-k objects for the users, where (i) the
baseline (BL) approach computes the top-k objects for
all of the users individually; (ii) the GRP-TOPK approach
groups the users and computes the top-k objects of all the
users jointly (GRP); and (iii) the INDIV-U approach that
uses the same joint processing techniques of the GRP-
TOPK approach, but uses the candidates to avoid com-
puting the top-k object for some users (Indiv).

– Finding the best combination of the location and the key-
words from the given set of candidates, where we com-
pare the performances of the exact (E) and the approxi-
mate (A) methods.
As the top-k object computation and the candidate se-

lection steps are interleaved in the INDEX-U approach, the
performance of the INDEX-U is reported as the total cost
when varying the number of users at the end of this section.

The parameter ranges are listed in Table 5 where the val-
ues in bold represent the default values. In all experiments,
a single parameter is varied while keeping the rest as the de-
fault settings to study the impact on: (i) the mean runtime per
user (MRPU) to compute the top-k objects; (ii) the mean I/O
cost per user (MIOPU) to compute the top-k objects; (iii) the
total runtime of selecting the best candidate; and (iv) the ap-
proximation ratio of the approximate and the exact methods.
This value is the ratio between the number of RkNN users of
the best candidate returned by the approximate method, over
the number of RkNN users of the best candidate returned by
the exact method. Scalability is evaluated by varying the to-
tal number of users, and by reporting (i) the Total Runtime,
and (ii) the Total I/O cost for computing the top-k objects,
instead of the mean values. We also evaluate the approaches
for both the Euclidean distance and the visibility (V) as the
spatial relevance in the MaxST problem. The runtime of all
experiments is reported in milliseconds (ms).
Varying kkk. Fig. 9 and Fig. 10 show the the mean costs of
computing the top-k objects of the users for Flickr and LA
datasets, respectively. Since the GRP-TOPK and the INDIV-
U approach use several pruning strategies, and avoid visit-
ing any page multiple times, the costs are significantly lower
than the baseline (BL). Both the mean I/O costs and the
mean runtime per user are slightly less for the INDIV-U ap-
proach than the GRP-TOPK approach, as the INDIV-U ap-
proach prunes some users as well, where the GRP-TOPK ap-
proach computes the top-k objects for all users jointly.

The costs in the LA dataset are much higher than the
costs in the Flickr dataset for the same settings, as half a
million data points are densely located in LA, whereas the
Flickr dataset contains 1 million data points scattered all
over the world. Therefore, many objects in the LA dataset
have very close similarity values for a user compared to the
other dataset, and must be retrieved in the process.

Finding the optimal location and keywords in obstructed and unobstructed space 17

 0

 100

 200

 300

 400

 500

 600

1 5 10 20 50

M
R

PU

k

BL(V)
Grp(V)

Indiv(V)
BL

Grp
Indiv

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

(a) Runtime for finding top-k

 1

 4

 16

 64

 256

1 5 10 20 50

M
I
O
P
U

k

BL(V)
Grp (V)

Indiv (V)

BL
Grp

Indiv

(b) I/O cost for finding top-k

Fig. 9: Effect of varying k for Flickr dataset

Although the trend of the changes in the costs are sim-
ilar for the Euclidean distance and the visibility, the mean
runtime per user for visibility is much higher than the Eu-
clidean distance metric, as there are additional calculations
required (finding the visible segments of a node/object and
calculating angle bounds) for visibility.

Fig. 11a and Fig. 11b demonstrate the tradeoff between
the runtime and the quality of the approximation to select the
best candidate combinations for visibility and the Euclidean
distance, respectively, in all three datasets. For both cases,
the runtime of the exact (E) method does not vary much
for k as it uses only basic pruning techniques, and exhaus-
tively computes all candidate combinations. The approxima-
tion ratio of the exact method is shown as 1 (the best ratio)
to help compare with the approximate method. The runtime
and the accuracy of the approximation increase with k, as
more candidates are eligible to be included in the answer
of the MaxST query. For all three datasets, the approximate
method (A) selects the candidate combination of keywords
greedily, and thus requires around 3 orders of magnitude less
computational time than the exact method.
Varying ααα . A higher value of α indicates more prefer-
ence towards spatial similarity. As shown in our previous
work [7], as the MBR of the users’ locations, and the union
of the users’ keywords remain the same, the cost of the top-
k computation of our proposed approaches remains almost
constant when α is varied. Fig. 12 show the runtime and the
approximation quality when varying α . The runtime of each
method does not vary much w.r.t. α .

The approximation ratio in the LA dataset is compara-
tively low for lower values of α , but rapidly increases as α

increases. The reason is that as the location density of the
objects in LA dataset is very high, the visibility scores (spa-
tial similarity) for most of the relevant objects are usually
very low. Therefore, the total similarity score of an object
is more sensitive to the textual score (thereby, the choice of

1 2 3 4 5 6
 0
 0.2
 0.4
 0.6
 0.8

 1
1

10
100
1K

10K
100K

R
u
n
t
i
m
e

F(V)-E
F(V)-A

LA(V)-E
LA(V)-A
Y(V)-E
Y(V)-A

UL
Ra
ti
o

R
u
n
t
i
m
e

Fig. 15: Candidate selection runtime and approximation ra-
tio tradeoff for varying UL

the candidate text) in the LA dataset when compared to the
other datasets. Therefore, the accuracy of the approximate
method increases rapidly as α increases for the LA dataset
when a higher weight is given to the spatial similarity.

Varying UL. We now vary the number of keywords per
user, and present the effect on performance in Fig. 13 and
Fig. 14 for the Flickr and LA datasets, respectively. The cost
of the baseline increases proportionally with the increase of
UL for the Euclidean distance metric, as more objects be-
come relevant to each user. The increase in the costs of the
baseline is not that prominent for the visibility, as those ad-
ditional objects may not be visible to that user. The mean
costs of our proposed GRP-TOPK and INDIV-U approaches,
where the users are grouped together as a super-user, do
not vary much. The reason is that although UL increases,
the total number of unique keywords in the group (UW) re-
mains constant, so the number of objects retrieved remains
unchanged as well.

18 Farhana Murtaza Choudhury1 et al.

Fig. 15 shows the runtime and the approximation ratio
to find the result candidate combination. Here, the number
of users that are a reverse kNN of the result, increase with
the increase of UL for both exact and approximate methods,
and the approximation quality increases as well.
Varying UW. Fig. 16 shows the effect on performance when
varying the total number of unique keywords for the group
of the users in the Flickr dataset. Here, a lower value in-
dicates that the queries share more keywords. As the GRP-
TOPK and the INDIV-U approaches exploit shared I/Os among
users, it outperforms the baseline, and the benefit is greater
as overlap increases.

Fig. 17a and Fig. 17b show the runtime of the exact and
the approximate approaches for selecting the candidate in
all three datasets for the Euclidean distance and the visibil-
ity as spatial relevance, respectively. As the set of keywords
UW is also the set of candidate keywords, the runtime of
candidate selection increases for both methods. As the ex-
act method checks all possible combinations of keywords
after applying some basic pruning, the runtime for the ex-
act method increases rapidly when compared to the approx-
imate method. The runtime for visibility metric is more than
that of the Euclidean distance for the same settings, as each
visibility calculation is more computationally costly than a
single Euclidean distance calculation.

Fig. 17a shows the effect on the approximation ratio when
varying UW for all three datasets, and for both spatial rel-
evances. As UW increases, the number of combinations of
the candidate keywords also increases. Therefore, the accu-
racy of the approximate method is very high for lower values
of UW (almost 1), and decreases gradually as UW increases.
Varying ωωω . The performance when varying the number
of candidate keywords to select ω is shown in Fig. 18. As
the number of keyword combinations increases with ω , the
runtime of both the exact and the approximate approach in-
crease for both spatial similarity metrics (Fig. 18a and Fig. 18b).
As the number of combinations to check in the exact method
increases exponentially with the increase of ω , the benefit
of the approximate approach is higher as ω increases. The
number of users that are a reverse kNN of the result candidate
combination increases as ω increases, and the accuracy of
the approximate method gradually drops. Fig. 18c demon-
strates this scenario for all of the datasets.
Varying |||LLL|||. Fig. 19a and Fig. 19b show the runtime when
varying the number of candidate locations |L| for the two
different spatial similarity metrics respectively. As the top-
k processing of the users does not depend on |L|, we have
only shown the performance of the exact and the approx-
imate methods. As the total number of possible candidate
combinations increase with the increase of |L|, the runtime
increases proportionally with |L| for both methods. As the
visibility needs to be calculated for each qualifying candi-
date locations, the runtime for visibility is higher than that of

Table 6: The performance of approximate approach for vary-
ing |U | (visibility as spatial relevance)

XXXXXXXXDataset
|U |

100 200 400 800 1600

Flickr

Runtime(E) 52K 82K 121K 180K 190K
Runtime(A) 59.9 73.4 99.9 121.3 145.3

Ratio(A) 0.99 0.98 0.98 0.95 0.97
TR(E) 0.86 0.78 0.68 0.53 0.50
TR(A) 1.00 0.99 0.99 0.97 0.99

LA

Runtime(E) 48K 81K 120K 161K 192K
Runtime(A) 69.0 84.4 120.2 150.4 191.9

Ratio(A) 0.60 0.68 0.79 0.79 0.84
TR(E) 0.87 0.79 0.69 0.58 0.50
TR(A) 0.80 0.84 0.90 0.90 0.92

Yelp

Runtime(E) 36K 67K 100K 164K 189K
Runtime(A) 56.7 69.5 85.5 91.3 128.4

Ratio(A) 0.93 0.94 0.97 0.97 0.96
TR(E) 0.90 0.82 0.73 0.57 0.50
TR(A) 0.96 0.97 0.98 0.98 0.98

the Euclidean distance. The accuracy of the approximation
increases slightly for a higher value of |L|, as more candidate
locations become potential results.
Varying AAArrreeeaaa. The performance of the approaches do not
vary much with the change in the area of the users’ loca-
tions, which is similar to our prior finding [7] for Euclidean
distance. The graphs are omitted for brevity.
Varying |||UUU |||. We evaluate the scalability of our proposed
approaches by varying the number of users |U |. We show
the runtime and the I/O costs of computing the top-k objects
instead of the mean values for the LA dataset in Fig. 20.
Similar to our previous finding in [7], as the number of users
increases, the cost of the baseline increases proportionally as
BL processes the users one by one. As the I/Os are shared
among users, the advantage of our proposed approaches be-
comes more prominent when the number of users are higher.

Fig. 21 shows the performance of the INDIV-U and the
INDEX-U approaches as the total runtime of answering a
MaxST query, including both the top-k object computation
and the candidate selection time of the approximate approach.
Both approaches apply pruning techniques to avoid comput-
ing the top-k objects of the unnecessary users, where the
INDIV-U approach applies the techniques over individual
users, and the INDEX-U approach finds them using a MIUR-tree
index of the users. In all cases, the INDEX-U approach out-
performs INDIV-U, as a hierarchy of the users helps to prune
branches of the index (multiple users together), thus reduc-
ing overall time. The benefit of the INDEX-U approach slightly
improves with the increasing value of |U |.
Efficiency vs. approximation quality tradeoff. Fig. 22a
and Fig. 22b show the efficiency versus the approximation
quality tradeoff for varying the number of users for visibil-
ity and Euclidean distance, respectively. Fig. 22a presents
the tradeoff in the LA dataset, and Table 6 presents the per-
formance of the approaches for visibility in all of the three

Finding the optimal location and keywords in obstructed and unobstructed space 19

datasets. Clearly, the approximate approach is about 3− 4
orders of magnitude faster than the exact method, as the
approximate approach selects the candidate combination of
keywords greedily.

In Fig. 22a, the approximation ratio in the LA dataset is
comparatively low for lower values of |U |, but the approxi-
mation ratio does not vary much for the other two datasets
(Table 6). This can be explained similarly when the value of
α is varied using Fig. 12c. As the LA dataset is highly dense,
the visibility score for most of the relevant objects are usu-
ally very low, and thus the total similarity score of an object
is more sensitive to the textual score for the default value of
α (0.5) than the other datasets. As |U | increases, the greedy
selection of the candidate keywords can increase relevance
with more users. The advantage of approximation in both
efficiency and quality is more prominent as |U | increases.

To better comprehend the trade-off between efficiency
and the approximation quality, we present a trade-off score
TR, where the runtime and the approximation ratio are com-
bined by a linear weighted function. Specifically,

TR = γ×T+ γ×Ratio ,

where T is the runtime normalized between [0,1]. We show
the trade-off scores for both exact and approximate methods
in Table 6 for γ = 0.5, i.e., equal weight on both values.

10 Related Work

10.1 Spatial databases

Relevant work from the spatial database domain can be cate-
gorized mainly as Maximizing Bichromatic Reverse k Near-
est Neighbor (MaxBRkNN) and location selection queries.
MaxBRkNN queries. Wong et al. [33] introduced the MAX-
OVERLAP algorithm to solve the MaxBRkNN problem. The
algorithm iteratively finds the intersection point of the Near-
est Location Circles (NLCs) that are covered by the largest
number of NLCs. The optimal region is the overlap of these
NLCs. This work also supports `-MaxBRkNN queries to find
the ` best regions. In a later work, Wong et al. [34] extended
the MAXOVERLAP algorithm to support the Lp-norm and
three-dimensional space. However, the scalability of MAX-
OVERLAP is an issue, as the computation of the intersection
points for the NLCs is expensive.

Other work exists that overcome the limitations of MAX-
OVERLAP. Zhou et al. [43] introduced the MAXFIRST al-
gorithm which iteratively partitions the space into quadrants
and use the NLCs to prune the quadrants that cannot be a
part of the result. Liu et al. [20] present the MAXSEGMENT

algorithm that transforms the optimal region search problem
to the optimal interval search problem. They use a variant of
plane sweep to find the optimal interval.

Approximate solutions have also been proposed to im-
prove the efficiency. Lin et al. [18] proposed OPTREGION

where each NLC is approximated by the minimum bound-
ing rectangle (MBR) and a sweep-line technique is used to
find the overlapping NLCs. An estimation of the number of
overlapping NLCs is computed using the MBRs to prune
the intersection points. Alternately, Yan et al. [38] propose a
grid-based approximation algorithm called FILM. Since the
algorithm is approximate, the solution requires an order of
magnitude less computation time than MAXOVERLAP. The
authors extended FILM to answer the related problem of
locating k new services that collectively maximize the total
number of users.

These previous studies focus solely on spatial properties
such as the intersection of geometric shapes [33, 34], space
partitioning [43], or sweep-line techniques [18, 20] in the
query processing methods. Therefore, it is not straightfor-
ward to extend these solutions to support the textual compo-
nent of the MaxST query.

Location selection queries. The work [27, 42] explore op-
timal location queries, which find a location for a new fa-
cility that minimizes the average distance from each cus-
tomer to the closest facility. Zhang et al. [42] propose the
MDOL prog algorithm which partitions space to find an op-
timal location. Qi et al. [27] maintain the influence set of a
potential location p that includes the customers for whom
the nearest facility distance is reduced if a new facility is
established at p. A similar problem was presented in other
work [17, 28, 39, 40] which finds a location for a new server
such that the maximum distance between the server and any
client is minimized. Papadias et al. [26] find a location that
minimizes the sum of the distances from the users. The op-
timal location query is also explored for road network dis-
tance [3, 4, 36]. The proposed approaches exploit the as-
sumption that the location of the objects are confined by
the underlying road network, and thus reduce the number
of computations significantly than the approaches proposed
for Euclidean distance.

A maximal influence query ([1, 16, 19, 31, 35]) finds
the optimal location to place a new facility such that the in-
fluence of that facility is maximized. Here, the influence of
a location c represents the cardinality of customers whose
corresponding nearest facility will be c if a new facility is
established in c. These queries focus on an aggregation over
distances from the query location, such as the average or the
minimum distance. These works do not directly address the
problem of this article, maximizing the reverse kNN users.

20 Farhana Murtaza Choudhury1 et al.

10.2 Spatial-textual databases

In the literature of spatial-textual queries, the reverse spatial-
textual kNN (RSTkNN) and the maximizing reverse spatial-
textual kNN (MaxST) are the most relevant to our problem.

RSTkNN. Given a dataset D of spatial-textual objects, a
target query object q, an RSTkNN query finds all the objects
in D that have q in their list of top-k relevant objects. The
ranking of the objects use an objective function which com-
bines both spatial proximity and text relevancy. Lu et al.
[21] proposed the Intersection-Union R-tree (IUR-tree) in-
dex, and later presented a cost analysis for RSTkNN queries
[22]. Each node of an IUR-tree consists of an MBR and two
textual vectors: an intersection vector and a union vector.
The weight of each term in the intersection (union) textual
vector is the minimum (maximum) weight of the terms in
the documents that are contained in the corresponding sub-
tree. Each non-leaf node is also associated with the number
of objects in the subtree rooted at that node.

In their proposed solution, an upper and a lower bound
similarity are computed between each node of the IUR-tree
and the k·th most similar object. A branch-and-bound al-
gorithm is then used to answer the RSTkNN query. In this
work, the computation of the bounds and the algorithm are
designed for the monochromatic case only since both the
data objects and the query objects belong to the same type,
and the nodes of the tree store only one type of object.

MaxRSTkNN. Given a set of users and a set of facilities,
Gkorgkas et al. [13] address the problem of selecting at most
ω keywords as the text description of a specific facility, such
that the facility will appear in the top-k results of the maxi-
mum number of users. An extension of this problem is stud-
ied in our earlier work ([7]), where the problem is to select
both the location and the text description to establish a fa-
cility so that the reverse spatial-textual kNN of that facility
from the set of users will be maximum.

A recent work by Xie et al. [37] independently propose a
solution of a subproblem of this article, where, given a set of
keywords, the query is to find a region in space to establish
a facility such that the facility will be a top-k spatial-textual
object of the maximum number of users. They present both
an exact and an approximate solution based on Voronoi dia-
grams to find such regions.

10.3 Visibility queries

Visibility problems studied in spatial databases usually in-
volve finding the kNN [25, 32] or RkNN [10, 11, 12] objects
for a given query point, where the shortest path between two
points without crossing any obstacle is taken as the distance
measure, denoted as the obstructed distance.

Masud et al. [24] propose the k maximum visibility query
that finds top-k locations from a set of query locations with
the maximum visibility of a target object T in the presence
of obstacles. Choudhury et al. [5] present an efficient ap-
proach to construct a Visibility Color Map (VCM), where
each point in the space is assigned a color value denoting
the visibility measure of a query target. [29] study the prob-
lem of constructing a VCM for a moving target. In general,
all of these approaches use the concept of an obstructed re-
gion to find the parts of the space that are visible from the
query location(s), and then calculate the visibility value of
the visible part of the target object.
Visual-textual queries. Zhang et al. [41] study the problem
of finding the top-k objects based on the visibility and the
textual similarity with respect to a query location and a set
of query keywords. They propose a two pass method on the
IR-tree where (i) the first pass iteratively explores the region
around the query location to determine the obstructed and
the visible region w.r.t. the query, and (ii) the second pass is
used to calculate the visibility and textual similarity of the
visible objects in a best-first manner.

Our approach to answer the MaxST query for visibility
metric also follows a similar principle, where the obstructed
regions are pre-computed and indexed, and then an OIR-tree
is used to compute the visibility of the necessary objects and
the candidates.

11 Conclusion

In this work, we presented solutions to efficiently answer a
Maximized Bichromatic Reverse Spatial Textual k Nearest
Neighbor (MaxST) query, which finds an optimal location
and a set of keywords for an object so that the object has the
maximum number of RkNNs. We proposed three different
solutions to answer the MaxST query for the spatial-textual
data, and we presented the necessary calculations for the ap-
proaches using two different spatial similarity metrics, (i)
the Euclidean distance and (ii) the visibility. In all of our
proposed methods, we improved the overall efficiency by
pruning the candidates, sharing the processing and I/O costs
of the multiple users, and avoiding multiple retrievals of the
same object, even for visibility, where the visibility calcu-
lation of an object requires the location of the other objects
as well. We also proposed an approximate solution for the
keyword selection component of the problem.

Through extensive experiments using three publicly avail-
able datasets, we compared the performance of our proposed
approaches in different settings. In summary, we find that
the approximate algorithm, which greedily selects the key-
words, is around 2−3 orders of magnitude faster than an ex-
act method. The GRP-TOPK approach that groups the users
and finds the top-k objects of the users jointly, performs

Finding the optimal location and keywords in obstructed and unobstructed space 21

about 2− 3 times better than the baseline, and the benefit
increases when using a visibility metric. As the INDIV-U ap-
proach prunes users as well, the performance of the INDIV-
U approach is close to or better than the GRP-TOPK ap-
proach in all settings tested. The INDEX-U performs slightly
better than the INDIV-U approach, at the cost of maintaining
an additional index for the users, but the benefits increase as
the number of users increases.

Acknowledgements This work was supported by the Australian Re-
search Council’s Discovery Projects Scheme (Grants DP140101587,
DP170102231, and DP170102726) and Google Faculty Research Award.
This work was partially supported by the National Natural Science
Foundation of China (NSFC) 91646204. Farhana Choudhury is the re-
cipient of a scholarship from National ICT Australia. We thank Lisi
Chen, Gao Cong, Christian S. Jensen, and Dingming Wu for providing
the implementation of the IR-tree in [2].

References

1. J. Chen, J. Huang, Z. Wen, Z. He, K. Taylor, and R. Zhang. Anal-
ysis and evaluation of the top-k most influential location selection
query. Knowl. Inf. Syst., 43(1):181–217, 2015.

2. L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword
query processing: an experimental evaluation. PVLDB, 6(3):217–
228, 2013.

3. Z. Chen, Y. Liu, R. Chi-Wing Wong, J. Xiong, G. Mai, and
C. Long. Efficient algorithms for optimal location queries in road
networks. In SIGMOD, 2014.

4. Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long.
Optimal location queries in road networks. ACM Trans. Database
Syst., 40(3):1–41, 2015.

5. F. M. Choudhury, M. E. Ali, S. Masud, S. Nath, and I. E. Rabban.
Scalable visibility color map construction in spatial databases. Inf.
Syst., 42:89 – 106, 2014.

6. F. M. Choudhury, J. S. Culpepper, and T. Sellis. Batch processing
of top-k spatial-textual queries. In GeoRich, pages 7–12, 2015.

7. F. M. Choudhury, J. S. Culpepper, T. Sellis, and X. Cao. Maxi-
mizing bichromatic reverse spatial and textual k nearest neighbor
queries. PVLDB, 9(6):456–467, 2016.

8. G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k
most relevant spatial web objects. PVLDB, 2(1):337–348, 2009.

9. U. Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, 1998.

10. Y. Gao, B. Zheng, G. Chen, W. C. Lee, K. C. K. Lee, and Q. Li.
Visible reverse k-nearest neighbor query processing in spatial
databases. TKDE, 21(9):1314–1327, 2009.

11. Y. Gao, J. Yang, G. Chen, B. Zheng, and C. Chen. On efficient ob-
structed reverse nearest neighbor query processing. In GIS, pages
191–200, 2011.

12. Y. Gao, Q. Liu, X. Miao, and J. Yang. Reverse k-nearest neighbor
search in the presence of obstacles. Information Sciences, 330:
274–292, 2016.

13. O. Gkorgkas, A. Vlachou, C. Doulkeridis, and K. Nørvåg. Max-
imizing influence of spatio-textual objects based on keyword se-
lection. In SSTD, pages 413–430, 2015.

14. A. Guttman. R-trees: a dynamic index structure for spatial search-
ing. In SIGMOD, pages 47–57, 1984.

15. D. Hochbaum. Approximation Algorithms for NP-hard Problems.
PWS Publishing Company, 1997.

16. J. Huang, Z. Wen, J. Qi, R. Zhang, J. Chen, and Z. He. Top-k most
influential locations selection. In CIKM, pages 2377–2380, 2011.

17. J. J. Cardinal and S. Langerman. Min-max-min geometric facility
location problems. In EWCG, pages 149–152, 2006.

18. H. Lin, F. Chen, Y. Gao, and D. Lu. OptRegion: Finding opti-
mal region for bichromatic reverse nearest neighbors. In DASFAA,
pages 146–160, 2013.

19. Q. Lin, C. Xiao, M. A. Cheema, and W. Wang. Finding the sites
with best accessibilities to amenities. In DASFAA, pages 58–72,
2011.

20. Y. Liu, R.-W. Wong, K. Wang, Z. Li, C. Chen, and Z. Chen. A
new approach for maximizing bichromatic reverse nearest neigh-
bor search. Knowl. Inf. Syst., 36(1):23–58, 2013.

21. J. Lu, Y. Lu, and G. Cong. Reverse spatial and textual k nearest
neighbor search. In SIGMOD, pages 349–360, 2011.

22. Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi. Efficient algorithms
and cost models for reverse spatial-keyword k-nearest neighbor
search. ACM Trans. Database Syst., 39(2):1–46, 2014.

23. C. D. Manning, P. Raghavan, and H. Sch’́utze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

24. S. Masud, F. M. Choudhury, M. E. Ali, and S. Nutanong. Maxi-
mum visibility queries in spatial databases. In ICDE, pages 637–
648, 2013.

25. S. Nutanong, E. Tanin, and R. Zhang. Incremental evaluation of
visible nearest neighbor queries. TKDE, 22(5):665–681, 2010.

26. D. Papadias, S. Qiongmao, T. Yufei, and M. Kyriakos. Group
nearest neighbor queries. In ICDE, pages 301–312, 2004.

27. J. Qi, Z. Rui, L. Kulik, D. Lin, and X. Yuan. The min-dist location
selection query. In ICDE, pages 366–377, 2012.

28. J. Qi, Z. Xu, Y. Xue, and Z. Wen. A branch and bound method for
min-dist location selection queries. In ADC, pages 51–60, 2012.

29. I. E. Rabban, K. Abdullah, M. E. Ali, and M. A. Cheema. Visibil-
ity color map for a fixed or moving target in spatial databases. In
SSTD, pages 197–215, 2015.

30. G. Salton and C. Buckley. Term-weighting approaches in auto-
matic text retrieval. Inf. Process. Manage., 24(5):513–523, 1988.

31. Y. Sun, J. Huang, Y. Chen, R. Zhang, and X. Du. Location selec-
tion for utility maximization with capacity constraints. In CIKM,
pages 2154–2158, 2012.

32. Y. Wang, Y. Gao, L. Chen, G. Chen, and Q. Li. All-visible-k-
nearest-neighbor queries. In DEXA, pages 392–407, 2012.

33. R. C.-W. Wong, M. T. Özsu, P. S. Yu, A. W.-C. Fu, and L. Liu. Ef-
ficient method for maximizing bichromatic reverse nearest neigh-
bor. PVLDB, 2(1):1126–1137, 2009.

34. R. C.-W. Wong, M. T. Özsu, A. W.-C. Fu, P. S. Yu, L. Liu, and
Y. Liu. Maximizing bichromatic reverse nearest neighbor for lp-
norm in two and three-dimensional spaces. PVLDB, 20(6):893–
919, 2011.

35. T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t
most influential spatial sites. In VLDB, pages 946–957, 2005.

36. X. Xiao, B. Yao, and F. Li. Optimal location queries in road net-
work databases. In ICDE, 2011.

37. X. Xie, X. Lin, J. Xu, and C. Jensen. Reverse keyword-based
location search. In ICDE, 2017. to appear.

38. D. Yan, R. C.-W. Wong, and W. Ng. Efficient methods for finding
influential locations with adaptive grids. In CIKM, pages 1475–
1484, 2011.

39. D. Yan, Z. Zhao, and W. Ng. Efficient algorithms for finding op-
timal meeting point on road networks. PVLDB, 4(11):968–979,
2011.

40. D. Yan, Z. Zhao, and W. Ng. Efficient processing of optimal meet-
ing point queries in euclidean space and road networks. Knowl.
Inf. Syst., 42(2):319–351, 2015.

41. C. Zhang, L. Shou, K. Chen, and G. Chen. See-to-retrieve: effi-
cient processing of spatio-visual keyword queries. In SIGIR, pages
681–690, 2012.

42. D. Zhang, Y. Du, T. Xia, and Y. Tao. Progressive computation
of the min-dist optimal-location query. In VLDB, pages 643–654,

22 Farhana Murtaza Choudhury1 et al.

2006.
43. Z. Zhou, W. Wu, X. Li, M. L. Lee, and W. Hsu. MaxFirst for

MaxBRkNN. In ICDE, pages 828–839, 2011.

44. J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus
signature files for text indexing. ACM Trans. Database Syst., 23
(4):453–490, 1998.

Finding the optimal location and keywords in obstructed and unobstructed space 23

 0

 200

 400

 600

 800

 1000

1 5 10 20 50

M
R

PU

k

BL(V)
Grp(V)

Indiv(V)
BL

Grp
Indiv

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

(a) Runtime for finding top-k

 1

 4

 16

 64

 256

1 5 10 20 50

MI
OP

U

k

BL(V)
Grp (V)

Indiv (V)

BL
Grp

Indiv

(b) I/O cost for finding top-k

Fig. 10: Effect of varying k for LA dataset

1 5 10 20 50
 0
 0.2
 0.4
 0.6
 0.8

 1
1

10
100
1K

10K
100K

R
u
n
t
i
m
e

F(V)-E
F(V)-A

LA(V)-E
LA(V)-A
Y(V)-E
Y(V)-A

k
Ra
ti
o

R
u
n
t
i
m
e

(a) Candidate selection runtime and approx. ratio (for visibility)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1K 10K 100K

R
a
t
i
o

Runtime

k=1
k=5

k=10
k=20
k=50
F−E

LA−E
Y−E
F−A
Y−A

LA−A

(b) Runtime vs approx. ratio (for Euclidean distance)

Fig. 11: Candidate selection runtime and approximation ratio tradeoff for varying k

1

10

100

1K

10K

100K

0.1 0.3 0.5 0.7 0.9

R
u
n
ti
m

e
 (

m
s
)

α

F-E
LA-E
Y-E

F-A
LA-A
Y-A

(a) Runtime for Euclidean distance

1

10

100

1K

10K

100K

0.1 0.3 0.5 0.7 0.9

R
u

n
tim

e
 (

m
s)

α

F(V)-E
LA(V)-E

Y(V)-E

F(V)-A
LA(V)-A

Y(V)-A

(b) Runtime for visibility

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.3 0.5 0.7 0.9

R
a

tio

α

F(V)
LA(V)

Y(V)

F
LA
Y

(c) Approximation ratio

Fig. 12: Effect of varying α on candidate selection

24 Farhana Murtaza Choudhury1 et al.

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6

M
R

PU

UL

BL(V)
Grp(V)

Indiv(V)
BL

Grp
Indiv

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

(a) Runtime for finding top-k

 1

 4

 16

 64

 256

1 2 3 4 5 6

M
I
O
P
U

UL

BL(V)
Grp(V)

 Indiv(V)

BL
Grp

Indiv

(b) I/O cost for finding top-k

Fig. 13: Effect of varying UL for Flickr dataset

 0

 200

 400

 600

 800

 1000

1 2 3 4 5 6

M
R

PU

UL

BL(V)
Grp(V)

Indiv(V)
BL

Grp
Indiv

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

(a) Runtime for finding top-k

 1

 4

 16

 64

 256

1 2 3 4 5 6

M
I
O
P
U

UL

BL(V)
Grp(V)

 Indiv(V)

BL
Grp

Indiv

(b) I/O cost for finding top-k

Fig. 14: Effect of varying UL for LA dataset

 0

 100

 200

 300

 400

 500

 600

5 10 20 30 40

M
R

PU

UW

BL(V)
Grp(V)

Indiv(V)
BL

Grp
Indiv

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

P
lease purchase V

eryD
O

C
 P

S
 to P

D
F C

onverter on http://w
w

w
.verydoc.com

 to rem
ove this w

aterm
ark.

(a) Runtime for finding top-k

 1

 4

 16

 64

 256

5 10 20 30 40

M
I
O
P
U

UW

BL(V)
Grp (V)

Indiv (V)

BL
Grp

Indiv

(b) I/O cost for finding top-k

Fig. 16: Effect of varying UW for Flickr dataset

Finding the optimal location and keywords in obstructed and unobstructed space 25

1

10

100

1K

10K

100K

5 10 20 30 40

Ru
nt
im
e

UW

F−E
LA−E
Y−E

F−A
LA−A
Y−A

(a) Runtime for Euclidean distance

1

10

100

1K

10K

100K

5 10 20 30 40
Ru
nt
im
e

UW

F(V)−E
LA(V)−E
Y(V)−E

F(V)−A
LA(V)−A
Y(V)−A

(b) Runtime for visibility

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 20 30 40

R
a
t
i
o

UW

F(V)
LA(V)
Y(V)

F
LA
Y

(c) Approximation ratio

Fig. 17: Effect of varying UW on candidate selection

1

10

100

1K

10K

100K

 1 2 3 4 5 6 7 8

R
u

n
ti
m

e

ω

F−E
LA−E

Y−E

F−A
LA−A

Y−A

(a) Runtime for Euclidean distance

1

10

100

1K

10K

100K

 1 2 3 4 5 6 7 8

R
u

n
tim

e

ω

F(V)−E
LA(V)−E

Y(V)−E

F(V)−A
LA(V)−A

Y(V)−A

(b) Runtime for visibility

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

R
a

tio

ω

F(V)
LA(V)

Y(V)

F
LA
Y

(c) Approximation ratio

Fig. 18: Effect of varying ω for candidate selection

1

10

100

1K

10K

100K

1 20 50 100 300

Ru
nt
im
e

|L|

F−E
LA−E
Y−E

F−A
LA−A
Y−A

(a) Runtime for Euclidean distance

1

10

100

1K

10K

100K

1 20 50 100 300

Ru
nt
im
e

|L|

F(V)−E
LA(V)−E
Y(V)−E

F(V)−A
LA(V)−A
Y(V)−A

(b) Runtime for visibility

 0

 0.2

 0.4

 0.6

 0.8

 1

1 20 50 100 300

R
a
t
i
o

|L|

F(V)
LA(V)
Y(V)

F
LA
Y

(c) Approximation ratio

Fig. 19: Effect of varying |L| for candidate selection

26 Farhana Murtaza Choudhury1 et al.

 0
200K
400K
600K
800K

1M
1.2M
1.4M
1.6M
1.8M

100 200 400 800 1600

R
u
n
t
i
m
e

(
m
s
)

|U|

BL(V)
Grp (V)

Indiv (V)

BL
Grp

Indiv

(a) Runtime for finding top-k

 0

20K

40K

60K

80K

100K

100 200 400 800 1600

I
/
O

c
o
s
t

|U|

BL(V)
Grp (V)

Indiv (V)

BL
Grp

Indiv

(b) I/O cost for finding top-k

Fig. 20: Effect of varying |U | for LA dataset

 5000

 6000

 7000

 8000

 9000

100 200 400 800 1600

T
o
t
a
l

R
u
n
t
i
m
e

(
m
s
)

|U|

F-Indiv
LA-Indiv
Y-Indiv

F-IndexU
LA-IndexU
Y-IndexU

(a) Runtime for Euclidean distance

 5000

 6000

 7000

 8000

 9000

100 200 400 800 1600

T
o
t
a
l

R
u
n
t
i
m
e

(
m
s
)

|U|

F(V)-Indiv
LA(V)-Indiv
Y(V)-Indiv

F(V)-IndexU
LA(V)-IndexU
Y(V)-IndexU

(b) Runtime for visibility

Fig. 21: Effect of user pruning by varying |U |

 0.6

 0.8

 1

10 100 1K 10K100K 1M

R
a
t
i
o

Runtime

u=100
u=200
u=400
u=800

u=1600
F(V)-E

LA(V)-A

(a) Runtime vs approx. ratio (for visibility)

 0.6

 0.8

 1

10 100 1K 10K100K 1M

R
a
t
i
o

Runtime

u=100
u=200
u=400
u=800

u=1600
F-E

LA-E
Y-E
F-A

LA-A
Y-A

(b) Runtime vs approx. ratio (for Euclidean distance)

Fig. 22: Candidate selection runtime and approximation ratio tradeoff for varying |U |

