
Phrase-Based Pattern Matching in Compressed Text

J. Shane Culpepper and Alistair Moffat

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Victoria 3010, Australia

Abstract. Byte codes are a practical alternative to the traditional bit-oriented
compression approaches when large alphabets are being used, and trade away
a small amount of compression effectiveness for a relatively large gain in de-
coding efficiency. Byte codes also have the advantage of being searchable using
standard string matching techniques. Here we describe methods for searching in
byte-coded compressed text and investigate the impact of large alphabets on tradi-
tional string matching techniques. We also describe techniques for phrase-based
searching in a restricted type of byte code, and present experimental results that
compare our adapted methods with previous approaches.

1 Introduction

The compressed pattern matching problem is defined as: givena patternP , a text T ,
and a correspondingcompressed textZ generated by some compression algorithm, find
all occurrences ofP in T , that is, determine the set{|x| | T = xPy}, usingP andZ.

The naive approach is to decompress the text before performing the pattern match-
ing step, and fifteen years ago, this would probably have beenthe fastest mechanism.
But ongoing growth in CPU power compared to I/O seek times in secondary storage
devices has created a hardware speed gap, which allows increasingly complex algo-
rithms to be utilised within the time that might otherwise bespent on I/O costs. It
is, however, still necessary to balance efficiency (how quickly the compressed opera-
tion can be performed) and effectiveness (how good the compression is), and to take
into account practical effects such as caching performance. In this framework, word-
based modelling methods, combined with byte-aligned codes, offer several benefits [de
Moura et al., 2000]. In particular, the use of byte codes allows use of available exact
pattern matching algorithms, with only minimal modification required. The emphasis
in previous research has been on variants of the Boyer-Mooreapproach, particularly the
Horspool modification, see, for example, Fariña [2005]. While the BMH algorithm is
clearly efficient on character-based alphabets in uncompressed text, it is unclear how it
performs on the extended alphabets that arise from word-based compression models.

The traditional pattern matching problem has been studied for more than thirty
years, and a broad range of efficient solutions have been proposed. All of the practical
approaches use one of three searching techniques, and the notion of asearch window,
that positions the pattern relative to the text. The generaltechniques of interest include
prefix-based searching, suffix-based searching, and factor-based searching. Several em-
pirical studies of pattern searching strategies have also been conducted, and the reader
is referred to, for example, the work of Navarro and Raffinot [2002], who consider the



impact of both varying pattern sizes and also varying alphabet size, and draw much of
the previous work together.

However, relatively little is known about the performance impact of removing re-
dundancy from the search text. This paper examines that question, and also evaluates the
impact of large alphabets on uncompressed and compressed search times. We consider
prefix-based and factor-based searching approaches as wellas the favoured suffix-based
approaches. We also examine the restricted-prefix byte codes introduced by Culpepper
and Moffat [2005], and show that they too can be searched quickly using a modified
Boyer-Moore-Horspool mechanism. Indeed, compression accelerates pattern matching
so much that byte-coded sequences can be searched fasterafter compression than they
can in their raw, uncompressed, form.

2 Byte-aligned compression

One of the first practical compressed pattern matching approaches was proposed by
Manber [1997]. Manber’s simple byte-pair encoding is efficient, but does not give com-
petitive compression effectiveness. However, the idea of using bytes instead of bits was
an important first step in creating algorithms that are both effective and efficient.

Simple byte coding techniques have also been used to compress sequences of in-
tegers in information retrieval systems, because they provide fast decoding compared
to more principled bit-based codes. As an example application, consider the following
text fragment taken from the popular children’s book “Fox inSocks” [Seuss, 1965]:

Bim comes.\n Ben comes.\n Bim brings Ben broom.\n Ben brings Bim broom.\n

Instead of using a character-based approach to compression, de Moura et al. [2000]
built on previous word-based approaches, and described what they called thespaceless
words model. A spaceless words parser assumes that the text to be represented is a
sequence of words followed by non-words, but with the added constraint that if any
non-word is a single space, the space can be discarded by the encoder, and re-introduced
later by the decoder. Words and non-words are assigned ordinal symbol identifiers as
they appear, so that the sequence of words is transformed into a sequence of integer
indices into a dictionary of strings. The resulting integersequence can be represented
by any coding method, including byte-aligned coding approaches. In the example, the
text segment from “Fox in Socks” is transformed into the integer sequence:

1, 3, 4, 5, 3, 4, 1, 6, 5, 7, 4, 5, 6, 1, 7, 4 ,

where the “missing” symbol number 2 represents a single space character, and is not
needed anywhere in this short message. Table 1 shows the sequential codewords as-
signed to this text fragment and the corresponding frequencies, and radix-4 codeword
assignments for a range of byte-aligned codes.

The basic byte coding method (bc) uses codes that are fully static and easy to con-
struct. It represents input integers using a radix-256 code in which values greater than
127 arecontinuersand are always followed by another byte, while values less than128
arestoppers. The codewords generated are prefix-free, and it is easy to identify code-
word boundaries directly in the compressed output, since the last byte of each codeword
is less than128. Note, however, that the code is static, and that actual frequency of each



Word Sym. Freq. bc phc thc dbc scbc rpbc

.\n 4 4 10 01 00 00 10 00 00 00
Bim 1 3 00 01 00 11 01 01 01
Ben 5 3 11 00 10 01 10 10 10 00 10 10
comes 3 2 10 00 11 00 01 10 11 10 01 11 00 11 00
brings 6 2 11 01 11 01 01 11 10 11 00 11 01 11 01
broom 7 2 10 10 00 11 10 01 11 11 11 01 11 10 11 10
(space) 2 0 01 — — — — —

Table 1. Symbol assignments and corresponding radix-4 codewords generated using a space-
less words model on a text fragment from “Fox in Socks”. In thecolumnbc the codewords are
assigned based on ordinal symbol ordering; all other columns take the symbol frequency into
account and bypass symbol 2, which does not appear in the message.

symbol is ignored. The “bc” column of Table 1 shows the codewords assigned when
the set of symbol identifiers are taken at face value, and a radix-4 code computed (rather
than the more usual radix-256 one). In a radix-4 version ofbc, the “byte” values00 and
01 are stoppers and the values10 and11 denote continuers. Note that symbol 2, which
represents a single space, is assigned a code even though it does not appear in trans-
formed source message, and that the most frequent symbol is not necessarily assigned
the shortest codeword.

Another option is to calculate a radix-256 Huffman code, denotedphc (for plain
Huffman code) in Table 1. Now an optimal code is computed for the set of symbol
frequencies, and the source message represented accordingly. However, whilephc pro-
vides maximal flexibility in assignment of codewords, it is impossible to search directly
in the compressed text because one codeword can be a suffix of another codeword.
Consider the codewords assigned byphc for the wordsBim andbrings in Table 1. The
codeword01 assigned toBim is a suffix of the codeword11 01 assigned tobrings, and
a search forBimwill result in a match against the second part ofbrings. In the example
code the ambiguity could be resolved by looking at the preceding “byte” to see if it con-
tains11, but in a larger code, direct searching is impossible, sincecodeword boundaries
are not identifiable.

To reintroduce searchability, de Moura et al. [2000] described tagged Huffman
codes(thc), as a variation of the arrangement used inbc. Tagged Huffman codes are
radix-128 Huffman codes which use7 bits in each byte to store the Huffman code and1
bit to signal the beginning of a codeword. With the extra tag bit inserted,thc codes are
suffix freeand allow any string matching algorithm such asshift-or or horspool to
be used directly on the compressed text. The suffix-free property ensures that no false
matches occur. Note that the cost ofthc is exaggerated in Table 1 since in two-bit nib-
blets, only one actual data bit can be stored. Experimentally, searching inthc sequences
is fast [de Moura et al., 2000], and searches are two to eight times faster than if the cost
of decompression is added to the cost of uncompressed searching.

Brisaboa et al. [2003b] then noted that a static byte code could also be used, and in a
system they callend-tagged dense codes(dbc), applied the samebc coding mechanism,
but with the alphabet permuted into a new ordering dictated by decreasing occurrence
frequency. Apreludedescribing the permutation is then necessary, to ensure that the
decoder knows which source symbol should be assigned which codeword. In general,



the cost of the permutation is recovered through the use of shorter codewords for more
frequent symbols, and overall compression is improved. Theprelude proposed by Bris-
aboa et al. [2003b] is a rank-based mapping. For example, in Table 1, the symbol5 is the
3rd most frequent and is assigned the codeword10 00. Note that symbol2, which does
not appear at all in the example message, is no longer allocated a codeword – this is the
“dense” part of the name. A drawback of the use of a prelude is that decoding is slower
than the direct use ofbc, because each decoded symbol must now be de-permuted via
a large array, and cache-miss issues intrude [Culpepper andMoffat, 2005].

Brisaboa et al. [2003a] further realised that partitioningvalues other than128 are
possible, and that the sets of stoppers and continuers can beof different sizes – that
better compression can be achieved by calculating an optimal partition based on the
probability distribution of the input symbols. Brisaboa etal. [2003a] call this method
(S, C)-dense coding (scbc). The only constraint is that the number of stoppers plus the
number of continuers must satisfyS + C = R, where, as before,R is the radix of the
coding system. For example, ifR = 4 (as is used in the examples shown in Table 1)
there are three possible(S, C)-dense arrangements:(1, 3), (2, 2), and(3, 1). Note that
the (2, 2)-arrangement corresponds todbc. Table 1 shows the(3, 1)-arrangement, the
best choice for the example text.

The most recent byte code variant provides a more flexible compromise between
phc and thescbc coding approach [Culpepper and Moffat, 2005]. This method,called
restricted prefix byte coding(rpbc), uses the first byte of each codeword to com-
pletely describe its length. Additional bytes can then use all of the remaining codespace.
This allows compression gains, because different probability distributions can be more
closely approximated by codes. Culpepper and Moffat showedthat optimal codes can
be calculated using a simple brute force method; and that additional compression gains
are possible if care is taken when constructing the prelude.In Table 1, the optimalrpbc
code turns out to be(1, 1, 1, 2)-arrangement, where the set of four values describe the
codeword lengths associated with each of the four possible first “bytes”.

The compression gain ofrpbc does not come without cost. It is harder to track code-
word boundaries in the compressed text, and backwards decoding – starting at a given
codeword, and moving backwards in the byte stream to identify preceding codewords
– is not possible. These new constraints make searching directly in the compressed text
more challenging, particularly when using suffix-based searching algorithms.

3 Searching in byte-aligned compressed text

The ability to apply any searching algorithm with minimal modification is one of the
key strengths of the byte-aligned compression systems. Forexample, the only alteration
necessary to search directly in a stopper-continuer byte code is to add a false match
filter that tests the byte immediately prior to a proposed match location. If that prior
byte is a continuer then this proposed location is a false match, since it is not aligned
on a codeword boundary in the byte stream. If it is a stopper, then the proposed match
can be accepted as a valid appearance of the compressed codeword sequence. On the
other hand, therpbc method requires a different approach to false matches, because the
codeword set is assigned exhaustively rather than partially, and it no longer suffices to
look at the prior byte.



Algorithm 1 : Brute force searching inrpbc. Function create tables appears in
Culpepper and Moffat [2005].
input: anrpbc-compressed arraytxt of compressed lengthtxtlen bytes, a compressed pattern
pat of lengthpatlen bytes when compressed, andrpbc control parametersv1, v2, v3, andv4,
with v1 + v2 + v3 + v4 ≤ R, whereR is the radix (typically256).
1: sett← 0 andp← 0 andoccurrences ← {}
2: create tables(v1, v2, v3, v4, R)
3: while t ≤ txtlen − patlen do
4: while p < patlen and pat [p] = txt [t + p] do
5: setp← p + 1
6: if p = patlen then
7: setoccurrences ← occurrences ∪ {t}
8: sett← t + suffix [txt [t]] + 1 andp← 0

output: the set of occurrences at whichpat appears intxt , presented as a set of byte offsets in
the compressed texttxt .

Algorithm 2 : Jump-based searching inrpbc.
input: an arraytxt of txtlen bytes representingrpbc-compressed symbols being searched, with
a current pattern alignment that currently associates the first byte of therpbc-compressed
pattern withtxt [t]; and an integerb that represents the number of bytes by which the pattern
needs to be shifted.
1: while b > 0 do
2: sets← suffix [txt [t]]
3: sett← t + s + 1
4: setb← b− s− 1

output: pointert indicates a new offset intxt that is againrpbc-symbol aligned.

The simplest way of makingrpbc-coded sequences searchable is to ensure that false
matches can never occur, by only testing valid pattern-to-text alignments. To do this,
the pattern shifting step of the search process must ensure that codeword boundaries are
identified and respected. Of itself this is not an onerous requirement, since in therpbc
code the first byte of each codeword can be used to index a tablethat unambiguously
records how many more bytes there are in that codeword. On theother hand, the extra
table lookup is required for each source symbol that is skipped, and potentially disrupts
the tight searching loops that are the hallmark of efficient pattern matching algorithms.

To see the necessary modification, Algorithm 1 shows how a brute-force pattern
searching mechanism is modified to maintain codeword alignments. Step 8 is the criti-
cal one; normally it would shift the text pointert by one, in order to accommodate the
next byte alignment. But, because source symbols typicallyspan multiple bytes, the in-
crement tot is augmented bysuffix [txt [t]], the number of trailing bytes in the codeword
that commences attxt[t].

The symbol-stepping approach is not possible with stopper-continuer byte codes
since there is no way to compute the codeword length without examining each byte of
the codeword. That is, fewer comparisons are necessary on average in therpbc-brute
force approach than in (say) ascbc-brute force approach; and false matches are impos-
sible since a shift never places the byte-level alignment between codeword boundaries.



A similar technique can be employed in any searching approach that employs longer
shifts, such as thehorspool algorithm. For example, suppose that a pattern align-
ment shift ofb bytes is indicated by a state-based searching process that is operating
at the byte level, a shift that would normally be effected by an assignment of the form
t ← t + b. Algorithm 2 shows how the assignment is replaced by a loop that steps at
least that many bytes forward, while retaining codeword alignment. This modification
can be applied to any jump-based pattern matching algorithm, including thekmp and
horspool techniques, and when shift values are returned from the processing tables
which fall in the middle of a codeword, the next codeword boundary is found via a
longer shift. However, additional lookups of text prefix bytes are needed to find code-
word boundaries, possibly affecting overall performance.

The other key issue with therpbc codes is that, in the form described by Culpep-
per and Moffat [2005], they cannot be decoded backwards. Reverse decoding is useful
when, for example, a small snippet is required, to show a context surrounding the lo-
cation of an identified match in the compressed text. One possibility – viable because
the first-byte of every codeword is touched during the loop shown in Algorithm 2 – is
to maintain a stack or sliding window of codeword starting points. The window would
need to be as long as the maximum extent of any backwards decoding.

A more elegant solution is also possible, by separating the prefix bytes and the suffix
bytes into separate compressed sequences. This approach, which we denoterpbc pa,
offers additional pattern matching alternatives. For example, using the code shown in
Table 1, the integer sequence

1, 3, 4, 5, 3, 4, 1, 6, 5, 7, 4, 5, 6, 1, 7, 4,

can be represented as a set of first “bytes”

01, 11, 00, 10, 11, 00, 01, 11, 10, 11, 00, 10, 11, 01, 11, 00,

and a corresponding set of suffix bytes,

, 00, , , 00, , , 01, , 10, , , 01, , 10, ,

where the commas show which of the first bytes each suffix byte is associated with.
Because all the first bytes are extracted out into a single sequence, they can be

accessed either backwards or forwards. And the first bytes indicate the length of each
codeword. That is, if the current location is known in both the sequence of first bytes
and also in the sequence of suffix bytes, backwards decoding is now possible.

The searching process must change, and is carried out in two parts. First, the se-
quence of first bytes is searched, looking for matches against the first bytes of the
codewords that make up the pattern. As the sequence of first bytes is processed, the
cumulative sum ofsuffix [txt [t]] is noted for each locationt at which there is a first-byte
match against the pattern. Once a set of candidate locationshas been identified, the
suffix bytes at those locations are checked against the suffixbytes of the pattern’s code-
words. Sentinels, or partial cumulative sums, can be used atpredetermined locations in
the prefix array to remove the requirement of inspecting eachprefix byte, but at the cost
of compression effectiveness. Thisrpbc pa (prefix array) version ofrpbc is one of the
methods evaluated in the next section.



4 Experimental results

To evaluate the speed at which the various byte codes can be searched, we built two files
of symbols from a 267 MB segment ofSGML-tagged newspaper text, drawn from the
WSJcomponent of the TREC data (seetrec.nist.gov). The first one,wsj267.wrd,
is the sequence of integers generated by the spaceless word model that was described
earlier. The second file,wsj267.repair, is a sequence of integers representing phrases
generated via an off-line, word-pair based encoding methodcalled RE-PAIR [Larsson
and Moffat, 2000]. Each symbol number represents a repeatedphrase identified in the
original word sequence, and because of the way the file is constructed, no pair of symbol
numbers repeats. As well as integer-on-integer searching and character-on-character
searching, five byte coding algorithms were investigated:bc, dbc, scbc, rpbc, and
rpbc pa. Thebc anddbc methods were uniformly a little slower thenscbc, and are
not shown in the graphs below.

The average length of queries in web search systems is around2.4 words per query
[Spink et al., 2001]. To mirror this type of searching, took patterns of length1 to 5
symbols, representing (in the case ofwsj267.wrd) sequences of1 to 5 words, or (in
the case ofwsj267.repair), 1 to 5 phrases. One hundred queries of each length were
generated from the uncompressed integer sequences in the source files, by generating a
random offset into it, and recording the sequence of symbolsat that point. This process
ensured that each pattern appeared at least once.

The integer pattern so generated can then be processed in different ways. For ex-
ample, it can be used to measure the speed of an integer-on-integer search process; or
converted back to the underlying character string and used in a character-on-character
manner; or converted into codewords using any of the byte coding schemes, and then ap-
plied in a compressed codeword-on-codewordapproach. For example, the three-symbol
sequence910, 2685, 153 represents the original sequence “offer may be”. The five dif-
ferent byte coding methods result in different corresponding patterns, with lengths vary-
ing from4 bytes to6 bytes.

The first experiment was designed to evaluate the cost of integer-on-integer search-
ing techniques. Figure 1 shows the measured performance of several different pattern
matching techniques, without any compression having been applied. Algorithms which
use preprocessed lookup tables proportional to the size of the alphabet tend to perform
poorly when pattern lengths are short. Accesses to the largelookup table result in cache
misses, which offset any gains achieved by the improved shifts. This effect continues
until the search patterns become moderately long. In fact, brute force outperforms all
of the more principled algorithms for patterns of three words or less, irrespective of the
input file’s probability distribution.

Figure 2 shows the speed at which the same patterns can be searched in the com-
pressed domain, using two different pattern search algorithms, and a range of different
byte-aligned coding methods. Both graphs in this figure relate to the spaceless words
file wsj267.wrd; with the additionalchar method representing character-on-character
searching in the uncompressed original form of the source file; and with theintmethod
representing integer-by-integer searching in the uncompressed sequence of integers.
When coupled with the brute-force searching approach (Figure 2a),rpbc performs
faster than any of the other byte code methods, and at the samespeed as searching
in the uncompressed integer file. With decompression costs (assuming that the data is
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Fig. 1. Baseline searching times for uncompressed, integer-on-integer pattern matching, using a
2.8 Ghz Intel Xeon with 2 GB of RAM. The methods are brute force; the Knuth-Morris-Pratt
method; Shift-Or searching; Backward Nondeterministic DAWG Matching; and the Horspool
variant of the Boyer-Moore method. All of these approaches are described by Navarro and Raf-
finot [2002].
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Fig. 2. Searchingwsj267.wrd using two different search techniques, and a range of uncom-
pressed and compressed representations of text and patterns, using a2.8 Ghz Intel Xeon with
2 GB of RAM.

stored in compressed form) included, the byte coding methods perform considerably
better than the “decompress then search” baselines reflected in theint andchar lines.

Figure 2b shows that the stopper-continuer byte codescbc performs better when
coupled with thehorspool searching method than when coupled with the brute force
method. Therpbc variant has the same speed as in the brute force mode, and is clearly
hampered by the additional operations involved in maintaining codeword boundaries.

Figure 3 shows the same experiment, but applied to filewsj267.repair. Now,
when the symbol distribution is essentially flat and the alphabet size is large and dense,
the integer-basedhorspool variant performs very poorly. Once again, therpbc algo-
rithm gives the same performance in thehorspool environment as it does in the brute
force one.
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Fig. 3. Searchingwsj267.repair using two different search techniques, and a range of uncom-
pressed and compressed representations of text and patterns, using a2.8 Ghz Intel Xeon with
2 GB of RAM.
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