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Abstract. Byte codes are a practical alternative to the traditionabliented
compression approaches when large alphabets are beingamgktrade away
a small amount of compression effectiveness for a relatilaige gain in de-
coding efficiency. Byte codes also have the advantage ofjtssarchable using
standard string matching techniques. Here we describeattefior searching in
byte-coded compressed text and investigate the impaatysf phabets on tradi-
tional string matching techniques. We also describe teglas for phrase-based
searching in a restricted type of byte code, and presentiexpetal results that
compare our adapted methods with previous approaches.

1 Introduction

The compressed pattern matching problem is defined as: gipattern P, atextT,
and a correspondingpmpressed text generated by some compression algorithm, find
all occurrences oP in T', that is, determine the sétx| | T’ = =Py}, usingP andZ.
The naive approach is to decompress the text before perigrthe pattern match-
ing step, and fifteen years ago, this would probably have Heefastest mechanism.
But ongoing growth in CPU power compared to 1/0 seek timestoadary storage
devices has created a hardware speed gap, which allowsagimegty complex algo-
rithms to be utilised within the time that might otherwise ¢gent on 1/O costs. It
is, however, still necessary to balance efficiency (how kjyithe compressed opera-
tion can be performed) and effectiveness (how good the cessfon is), and to take
into account practical effects such as caching performanddis framework, word-
based modelling methods, combined with byte-aligned carféer several benefits [de
Moura et al., 2000]. In particular, the use of byte codeswadlase of available exact
pattern matching algorithms, with only minimal modificaticequired. The emphasis
in previous research has been on variants of the Boyer-Magpeoach, particularly the
Horspool modification, see, for example, Farifia [2005].i¢/the BMH algorithm is
clearly efficient on character-based alphabets in uncosspretext, it is unclear how it
performs on the extended alphabets that arise from wordeb@a@mpression models.
The traditional pattern matching problem has been studiedriore than thirty
years, and a broad range of efficient solutions have beermgpeap All of the practical
approaches use one of three searching techniques, andtibe oba search window
that positions the pattern relative to the text. The gertediniques of interest include
prefix-based searching, suffix-based searching, and faetsed searching. Several em-
pirical studies of pattern searching strategies have aso bonducted, and the reader
is referred to, for example, the work of Navarro and Raffirat(J2], who consider the



impact of both varying pattern sizes and also varying alphatze, and draw much of
the previous work together.

However, relatively little is known about the performano®act of removing re-
dundancy from the search text. This paper examines thatignesnd also evaluates the
impact of large alphabets on uncompressed and compress®th senes. We consider
prefix-based and factor-based searching approaches aasviledl favoured suffix-based
approaches. We also examine the restricted-prefix bytesdatteduced by Culpepper
and Moffat [2005], and show that they too can be searchedkiyuitsing a modified
Boyer-Moore-Horspool mechanism. Indeed, compressioelacttes pattern matching
so much that byte-coded sequences can be searcheddfisteompression than they
can in their raw, uncompressed, form.

2 Byte-aligned compression

One of the first practical compressed pattern matching ages was proposed by
Manber [1997]. Manber’s simple byte-pair encoding is effitj but does not give com-
petitive compression effectiveness. However, the ideaiofgubytes instead of bits was
an important first step in creating algorithms that are béfcéve and efficient.
Simple byte coding techniques have also been used to compegsiences of in-
tegers in information retrieval systems, because theyigeolast decoding compared
to more principled bit-based codes. As an example appicationsider the following
text fragment taken from the popular children’s book “FoxSimcks” [Seuss, 1965]:

Bim comes,n Ben come§n Bim brings Ben broomn Ben brings Bim brooriin

Instead of using a character-based approach to compredsidfoura et al. [2000]
built on previous word-based approaches, and describetitidyacalled thespaceless
words model A spaceless words parser assumes that the text to be refg@se a
sequence of words followed by non-words, but with the addetsiraint that if any
non-word is a single space, the space can be discarded bydbdes, and re-introduced
later by the decoder. Words and non-words are assignedabigiimbol identifiers as
they appear, so that the sequence of words is transformedisequence of integer
indices into a dictionary of strings. The resulting integequence can be represented
by any coding method, including byte-aligned coding apphea. In the example, the
text segment from “Fox in Socks” is transformed into the getesequence:

1,3,4,5,3,4,1,6,5,7,4,5,6,1,7,4,

where the “missing” symbol number 2 represents a singleespharacter, and is not
needed anywhere in this short message. Table 1 shows therdgidwodewords as-
signed to this text fragment and the corresponding fregasenand radixt codeword
assignments for a range of byte-aligned codes.

The basic byte coding methotd) uses codes that are fully static and easy to con-
struct. It represents input integers using a ratlig-code in which values greater than
127 arecontinuersand are always followed by another byte, while values lezs 1B8
arestoppers The codewords generated are prefix-free, and it is easyetdify code-
word boundaries directly in the compressed output, sineéatt byte of each codeword
is less thari 28. Note, however, that the code is static, and that actualiegy of each



Word Sym. Freq. bc phc thc dbc scbe rpbc

A\n 4 4 1001 00 00 10 00 00 00
Bim 1 3 00 01 0011 01 01 01
Ben 5 3 1100 10 011010 1000 10 10
comes 3 2 1000 1100 011011 1001 1100 1100
brings 6 2 1101 1101 011110 1100 1101 1101
broom 7 2 101000 1110 011111 1101 1110 1110
(space 2 0 01 — — — — —

Table 1. Symbol assignments and corresponding radbedewords generated using a space-
less words model on a text fragment from “Fox in Socks”. In¢bkimnbc the codewords are
assigned based on ordinal symbol ordering; all other cotutake the symbol frequency into
account and bypass symbol 2, which does not appear in theageess

symbol is ignored. Thetc” column of Table 1 shows the codewords assigned when
the set of symbol identifiers are taken at face value, andir-rbcbde computed (rather
than the more usual rads6 one). In a radix4 version ofoc, the “byte” value$)0 and

01 are stoppers and the valusgsand11 denote continuers. Note that symbol 2, which
represents a single space, is assigned a code even thoumgsindt appear in trans-
formed source message, and that the most frequent symbat reenessarily assigned
the shortest codeword.

Another option is to calculate a rad266 Huffman code, denoteghc (for plain
Huffman code) in Table 1. Now an optimal code is computed fier $et of symbol
frequencies, and the source message represented actyrdimgever, whilephc pro-
vides maximal flexibility in assignment of codewords, itriggossible to search directly
in the compressed text because one codeword can be a suffnotifest codeword.
Consider the codewords assignedgby: for the wordsBim andbringsin Table 1. The
codeword)1 assigned t@imis a suffix of the codeword1 01 assigned tdorings, and
a search foBimwill result in a match against the second parbdfgs In the example
code the ambiguity could be resolved by looking at the prieegtbyte” to see if it con-
tains11, butin a larger code, direct searching is impossible, stockeword boundaries
are not identifiable.

To reintroduce searchability, de Moura et al. [2000] démmtitagged Huffman
codes(thc), as a variation of the arrangement usetdn Tagged Huffman codes are
radix-128 Huffman codes which usebits in each byte to store the Huffman code and
bit to signal the beginning of a codeword. With the extra tiagniserted,thc codes are
suffix freeand allow any string matching algorithm suchsad ft-or or horspool to
be used directly on the compressed text. The suffix-freegutpgnsures that no false
matches occur. Note that the costtak is exaggerated in Table 1 since in two-bit nib-
blets, only one actual data bit can be stored. Experimgnsalarching irthc sequences
is fast [de Moura et al., 2000], and searches are two to diglestfaster than if the cost
of decompression is added to the cost of uncompressed s&arch

Brisaboa et al. [2003b] then noted that a static byte cod&l@iso be used, and in a
system they caknd-tagged dense cod@®c), applied the samiec coding mechanism,
but with the alphabet permuted into a new ordering dictateddrreasing occurrence
frequency. Apreludedescribing the permutation is then necessary, to ensut¢htba
decoder knows which source symbol should be assigned wbidéword. In general,



the cost of the permutation is recovered through the usearfeshcodewords for more
frequent symbols, and overall compression is improved.prbkide proposed by Bris-
aboa et al. [2003b] is a rank-based mapping. For examplepkeT, the symbdl is the

3rd most frequent and is assigned the codewldrtl0. Note that symbo2, which does

not appear at all in the example message, is no longer afid@atodeword — this is the
“dense” part of the name. A drawback of the use of a preludesisdecoding is slower
than the direct use dafc, because each decoded symbol must now be de-permuted via
a large array, and cache-miss issues intrude [Culpeppéviaffet, 2005].

Brisaboa et al. [2003a] further realised that partitiomiadues other than28 are
possible, and that the sets of stoppers and continuers cahdi#ferent sizes — that
better compression can be achieved by calculating an oppiarétion based on the
probability distribution of the input symbols. Brisaboaadt[2003a] call this method
(S, C)-dense codinggcbc). The only constraint is that the number of stoppers plus the
number of continuers must satisfy-+ C' = R, where, as before? is the radix of the
coding system. For example, if = 4 (as is used in the examples shown in Table 1)
there are three possib(&, C')-dense arrangementd;, 3), (2,2), and(3, 1). Note that
the (2, 2)-arrangement correspondsdbc. Table 1 shows th€3, 1)-arrangement, the
best choice for the example text.

The most recent byte code variant provides a more flexibleptomise between
phc and thescbe coding approach [Culpepper and Moffat, 2005]. This metlcatied
restricted prefix byte codin@rpbc), uses the first byte of each codeword to com-
pletely describe its length. Additional bytes can then ulsaf ghe remaining codespace.
This allows compression gains, because different proiadistributions can be more
closely approximated by codes. Culpepper and Moffat shawatloptimal codes can
be calculated using a simple brute force method; and thatiadal compression gains
are possible if care is taken when constructing the preladiable 1, the optimatpbc
code turns out to bél, 1, 1, 2)-arrangement, where the set of four values describe the
codeword lengths associated with each of the four possilsie‘fiytes”.

The compression gain @pbc does not come without cost. Itis harder to track code-
word boundaries in the compressed text, and backwards shepedtarting at a given
codeword, and moving backwards in the byte stream to ideptéceding codewords
—is not possible. These new constraints make searchingtlgline the compressed text
more challenging, particularly when using suffix-baseddsag algorithms.

3 Searching in byte-aligned compressed text

The ability to apply any searching algorithm with minimal difccation is one of the
key strengths of the byte-aligned compression system&xammple, the only alteration
necessary to search directly in a stopper-continuer bytie @®to add a false match
filter that tests the byte immediately prior to a proposedcmadcation. If that prior
byte is a continuer then this proposed location is a falsemaince it is not aligned
on a codeword boundary in the byte stream. If it is a stoppen the proposed match
can be accepted as a valid appearance of the compressedocddmguence. On the
other hand, thepbc method requires a different approach to false matchesusedhe
codeword set is assigned exhaustively rather than partéadd it no longer suffices to
look at the prior byte.



Algorithm 1 : Brute force searching imrpbc. Function create_tables appears in
Culpepper and Moffat [2005].

input: anrpbc-compressed arrayt of compressed lengttxtien bytes, a compressed pattern
pat of lengthpatien bytes when compressed, afgbc control parameters; , vz, vs, andva,
with v1 + v2 + v3 + v4a < R, whereR is the radix (typically256).

1: sett — 0 andp < 0 andoccurrences — {}

2: create_tables(vi,v2,v3,v4, R)

3: whilet < tztlen — patlen do

4:  whilep < patlen and pat[p] = tzt[t + p] do
5: setp—p+1
6
7

if p = patlen then
setoccurrences < occurrences U {t}
8. sett «— t + suffizftaet[t]] + 1andp — 0
output: the set of occurrences at whiaky appears irtzt, presented as a set of byte offsets in
the compressed textt.

Algorithm 2 : Jump-based searchingi#pbc.

input: an arraytzt of txtlen bytes representingpbc-compressed symbols being searched, with
a current pattern alignment that currently associates isighfjte of therpbc-compressed
pattern with¢z¢[t]; and an integeb that represents the number of bytes by which the pattern
needs to be shifted.

1: whileb > 0 do

2:  sets «— suffix[tzt[t]]

3 sett—t+s+1

4: sethb—b—s—1
output: pointett indicates a new offset itwt that is againrpbc-symbol aligned.

The simplest way of makingpbc-coded sequences searchable is to ensure that false
matches can never occur, by only testing valid patterrexv-dlignments. To do this,
the pattern shifting step of the search process must ertgireddeword boundaries are
identified and respected. Of itself this is not an onerousirement, since in thepbc
code the first byte of each codeword can be used to index attedtl@nambiguously
records how many more bytes there are in that codeword. Oaotliee hand, the extra
table lookup is required for each source symbol that is sldppnd potentially disrupts
the tight searching loops that are the hallmark of efficiexitggn matching algorithms.

To see the necessary madification, Algorithm 1 shows how &ednrce pattern
searching mechanism is modified to maintain codeword al@nm Step 8 is the criti-
cal one; normally it would shift the text pointeby one, in order to accommodate the
next byte alignment. But, because source symbols typisaliyr multiple bytes, the in-
crement ta is augmented byuffiz[tzt[t]], the number of trailing bytes in the codeword
that commences at:t[¢].

The symbol-stepping approach is not possible with stoppetinuer byte codes
since there is no way to compute the codeword length withxanéning each byte of
the codeword. That is, fewer comparisons are necessaryesage/ in therpbc-brute
force approach than in (saykabc-brute force approach; and false matches are impos-
sible since a shift never places the byte-level alignmetvtéen codeword boundaries.



A similar technique can be employed in any searching apjprthext employs longer
shifts, such as theorspool algorithm. For example, suppose that a pattern align-
ment shift ofb bytes is indicated by a state-based searching processstbperating
at the byte level, a shift that would normally be effected hyaasignment of the form
t < t + b. Algorithm 2 shows how the assignment is replaced by a loapdteps at
least that many bytes forward, while retaining codeworgratient. This modification
can be applied to any jump-based pattern matching algoyitimcfuding thekmp and
horspool techniques, and when shift values are returned from theegsirg tables
which fall in the middle of a codeword, the next codeword kaany is found via a
longer shift. However, additional lookups of text prefix égytare needed to find code-
word boundaries, possibly affecting overall performance.

The other key issue with thepbc codes is that, in the form described by Culpep-
per and Moffat [2005], they cannot be decoded backwardseiRewdecoding is useful
when, for example, a small snippet is required, to show aextrsurrounding the lo-
cation of an identified match in the compressed text. Oneilpitigs— viable because
the first-byte of every codeword is touched during the loapashin Algorithm 2 — is
to maintain a stack or sliding window of codeword startingnp® The window would
need to be as long as the maximum extent of any backwards idgcod

A more elegant solution is also possible, by separatingtbfqbytes and the suffix
bytes into separate compressed sequences. This apprd@ch,we denotepbc_pa,
offers additional pattern matching alternatives. For eplagnusing the code shown in
Table 1, the integer sequence

1,3,4,5,3,4,1,6,5,7,4,5,6,1,7, 4,
can be represented as a set of first “bytes”
01,11,00,10,11,00,01,11,10, 11,00, 10, 11,01, 11, 00,
and a corresponding set of suffix bytes,
,00, , ,00, , ,01, ,10, , ,01, ,10,

where the commas show which of the first bytes each suffix Isyesociated with.

Because all the first bytes are extracted out into a singleesexg, they can be
accessed either backwards or forwards. And the first bytiisdte the length of each
codeword. That is, if the current location is known in botk #equence of first bytes
and also in the sequence of suffix bytes, backwards decoslmgw possible.

The searching process must change, and is carried out in awis. fFrirst, the se-
quence of first bytes is searched, looking for matches ag#iesfirst bytes of the
codewords that make up the pattern. As the sequence of firss ligy processed, the
cumulative sum ofuffiz[tzt[t]] is noted for each locatiohat which there is a first-byte
match against the pattern. Once a set of candidate locatiasmdeen identified, the
suffix bytes at those locations are checked against the swffies of the pattern’s code-
words. Sentinels, or partial cumulative sums, can be uspredetermined locations in
the prefix array to remove the requirement of inspecting gaefix byte, but at the cost
of compression effectiveness. Thisbc_pa (prefix array) version ofpbc is one of the
methods evaluated in the next section.



4 Experimental results

To evaluate the speed at which the various byte codes cambzhse, we built two files
of symbols from a 267 MB segment sGMmL-tagged newspaper text, drawn from the
WSJcomponent of the TREC data (seeec.nist.gov). The first onewsj267.wrd,

is the sequence of integers generated by the spaceless wole that was described
earlier. The second files j267 . repair, is a sequence of integers representing phrases
generated via an off-line, word-pair based encoding metadidd Re-PAIR [Larsson
and Moffat, 2000]. Each symbol number represents a rep@diede identified in the
original word sequence, and because of the way the file igreanied, no pair of symbol
numbers repeats. As well as integer-on-integer searchidgcharacter-on-character
searching, five byte coding algorithms were investigated:dbc, scbc, rpbe, and
rpbc_pa. Thebc anddbc methods were uniformly a little slower thewbc, and are
not shown in the graphs below.

The average length of queries in web search systems is atboiimgbrds per query
[Spink et al., 2001]. To mirror this type of searching, toatprns of length to 5
symbols, representing (in the casewafj267 .wrd) sequences of to 5 words, or (in
the case ofisj267.repair), 1 to 5 phrases. One hundred queries of each length were
generated from the uncompressed integer sequences inutee $ites, by generating a
random offset into it, and recording the sequence of symditdisat point. This process
ensured that each pattern appeared at least once.

The integer pattern so generated can then be processeddredtfways. For ex-
ample, it can be used to measure the speed of an integetegeirsearch process; or
converted back to the underlying character string and usedcharacter-on-character
manner; or converted into codewords using any of the bytagathemes, and then ap-
plied in a compressed codeword-on-codeword approachxaonge, the three-symbol
sequenc®10, 2685, 153 represents the original sequenaéfér may bé The five dif-
ferent byte coding methods result in different correspoggiatterns, with lengths vary-
ing from4 bytes to6 bytes.

The first experiment was designed to evaluate the cost afenten-integer search-
ing techniques. Figure 1 shows the measured performaneavefa different pattern
matching techniques, without any compression having bppliea. Algorithms which
use preprocessed lookup tables proportional to the sizeecdlphabet tend to perform
poorly when pattern lengths are short. Accesses to the leogep table result in cache
misses, which offset any gains achieved by the improvedsshihis effect continues
until the search patterns become moderately long. In faatelforce outperforms all
of the more principled algorithms for patterns of three vgoodless, irrespective of the
input file’'s probability distribution.

Figure 2 shows the speed at which the same patterns can lohasgan the com-
pressed domain, using two different pattern search algusf and a range of different
byte-aligned coding methods. Both graphs in this figuretedia the spaceless words
file wsj267.wrd; with the additionathar method representing character-on-character
searching in the uncompressed original form of the souregdiid with theint method
representing integer-by-integer searching in the uncesgad sequence of integers.
When coupled with the brute-force searching approach (Ei@a),rpbc performs
faster than any of the other byte code methods, and at the spe®sl as searching
in the uncompressed integer file. With decompression castsifing that the data is
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Fig. 1. Baseline searching times for uncompressed, integertegén pattern matching, using a
2.8 Ghz Intel Xeon with 2 GB of RAM. The methods are brute forces nuth-Morris-Pratt

method; Shift-Or searching; Backward NondeterministicV@ Matching; and the Horspool
variant of the Boyer-Moore method. All of these approachresdascribed by Navarro and Raf-

finot [2002].
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Fig. 2. Searchingwsj267.wrd using two different search techniques, and a range of uncom-
pressed and compressed representations of text and pattising a2.8 Ghz Intel Xeon with

2GB of RAM.

stored in compressed form) included, the byte coding metipaaform considerably
better than the “decompress then search” baselines reflectiee int andchar lines.
Figure 2b shows that the stopper-continuer byte cotte: performs better when
coupled with thehorspool searching method than when coupled with the brute force
method. Therpbc variant has the same speed as in the brute force mode, armditycl
hampered by the additional operations involved in maimaicodeword boundaries.
Figure 3 shows the same experiment, but applied towll§267 . repair. Now,
when the symbol distribution is essentially flat and the alt size is large and dense,
the integer-basenorspool variant performs very poorly. Once again, thgbc algo-
rithm gives the same performance in herspool environment as it does in the brute

force one.
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