Compact Set Representation for Information Retrieval

J. Shane Culpepper and Alistair Moffat

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Victoria 3010, Australia

Abstract. Conjunctive Boolean queries are a fundamental operatisemsearch
engines. These queries can be reduced to the problem «fénterg ordered sets
of integers, where each set represents the documentsrogtane of the query
terms. But there is tension between the desire to store stedffectively, in a
compressed form, and the desire to carry out intersectienatipns efficiently,
using non-sequential processing modes. In this paper weatgaintersection
algorithms on compressed sets, comparing them to the besteguential array-
based intersection algorithms. By adding a simple, low;@sxiliary index, we
show that compressed storage need not hinder efficient ghespieed intersec-
tion operations.

1 Introduction

Conjunctive Boolean queries are a fundamental operationddern search engines.
They are used for both traditionaND-mode querying, and also in ranked querying
environments when dynamic pruning techniques are usedhenwre-computed static
scores such as PageRank contribute to answer orderingl[Zot&offat, 2006].

In abstraction, a conjunctive quegyis handled by performing &|-way intersec-
tion over|q| ordered sets of integers, with each set being drawn from -zq@meputed
index and representing the documents containing one of ukeygerms. In this ab-
straction, any efficient algorithm can be used to compute¢téntersection. But there
is considerable tension between the desire to compressides lists, and the need
to process them using efficient intersection algorithmspadrticular, the majority of
set-versus-set and multi-way merging algorithms that hmeen described make use
of non-sequential access to the elements of the set andwsatlodds with standard
sequential decompression methods for compressed data.

In this paper we evaluate intersection algorithms on cosga®@ sets, comparing
them to the best array-based intersection algorithms. iBscaequential decompres-
sion implies linear search, compressed methods seem fatied slower than array-
based alternatives. But, by adding a simple and low-codtiaxindex, we show that
compressed storage need not hinder efficient and high-$pteesection operations.

2 Sets and Set Operations

Techniques for the manipulation of sets and set data havedeéeh area of research
for several decades. At the most basic level, set manipulatan be reduced to the
classicaldictionary problem, with three key operations needed:

INSERT(S,) ReturnS U z.

DELETE(S, x) ReturnS — z.
MEMBER(S, z) ReturnTRUE and a pointer te: if 2 € S; otherwise return
FALSE.

Standard efficient structures supporting this group of afp@ns include binary, bal-
anced, and self-adjusting trees; hash tables; and so dre tintverse over which the
sets are drawn is dense, and readily mapped to the intégers, for some valueu,
then direct-access structures suchhiteector can be used, in which the space required
is proportional ta; rather than ta:, the number of elements in the set. Different families
of operations may be needed in some applications. For exampl

INTERSECT(S,T) ReturnSNT.

JoIN(S, T) ReturnS U T.

DIFFERENCES, T) ReturnS —T..
These high-level set operations are often implementedj@situmber of more primitive
operations. In the next group, there is a notion of “the aureement”, and as the
sequence of operations unfolds, the locus of activity pedsefrom one element to
another, and the current element migrates around the set:

PREDECESSORS) Return a pointer to the element$thatimmediately pre-
cedes the current one.
SUCCESSOR.S) Return a pointer to the element$that immediately fol-
lows the current one.
F-SEARCH(S, z) Return a pointer to the least elementc S for which
y > x, wherezx is greater than the value of the current
element.
For example, intersection operations on sets of compasgitdecan be readily be im-
plemented using thel CESSORoperation; and intersection and union operations on
sets of differing size can be implemented using theEAf&H operation, as described
in more detail in Section 3.
The three mid-level set operations can, in turn, be impldetean top of two basic
set operations:

RANK (S, z) Return/{y | y € S andy < x}|.

SELECT(S, r) Return a pointer to theth largest element if§.

For example, BCCESSOKS) can be implemented asEBECT(.S, 1 + RANK (curr)),
wherecurr is the value of the current item. In addition, once theNR and SELECT
operations are available, the use of strategically chos#iogs in a sequence oESECT
operations can be used to provide an efficient non-seqliémidementation of the
F-SEARCH operation.

In this paper we are primarily interested iRTIERSECTOperations, implementing
them via a sequence ofu8 cCEssoRrand/or F-&ARCH calls. To set the scene for our
evaluation of techniques for implementing these operatitime next section briefly
summarizes several key data structures that can be usqoréseat sets.

3 Set Representations

There are several fundamentally different ways in whick séfntegers can be stored,
with different attributes, and different ways of handlifg thasic set operations.

Array of integers: A simple and efficient representation for a set is to store & i
sorted array of integers. For example, a set ef 15 objects over the universe. . . u,

with (say)u = 32, can be stored i5 words, or, via bit-packing techniques, ia five-

bit binary numbers. More generally, a setroftems each in the rangk. ..« can be
stored inn log u bits. Implementation of the operatiore&=CTin O(1) time is imme-
diate, via array indexing; and BMBER, RANK, and F-&ARCH requireO(log n) time,
O(logn) time, andO(log d) time respectively, wheré is the number of elements that
the current position is shifted by. Large-scale operatsuth as 3iN and DFFERENCE
takeO(n2) time, wheren; < ny are the sizes of the two sets involved, because every
member of the larger of the two sets might need to be listetiénoutput array. The
final operation, NTERSECT, is considered in more detail in the next section, but can be
implemented to requir®(n; log(n2/n1)) time in the worst case.

Bitvectors: Another classic set representation is as a bitvectorn~b# sequence in
which thex th bit is al if and only if x € S. Use of a bitvector shifts the cost balance
of the various set operations. All oREERT, DELETE, and MEMBER takeO(1) time;
but JoiN, DIFFERENCE and NTERSECTnow takeO(u) time, if an output set in the
same format is to be constructed. The EABCH, RANK and SELECT operations are
also expensive if unadorned bitvector representationsised. But in text querying
applications, the output set need not be of the same datadaygdecan be generated as
an array of integers. That means th¥t)-time intersection is possible via a sequence
of MEMBER operations, where; is the size of the smaller set.

A drawback of bitvectors is that thei?(u) space requirement is significantly more
than the corresponding array representation whegt «. Also, if the application re-
quires REDECESSORand SUCCESSORquery support then the basic bitvector repre-
sentation may not be efficient.

Jacobson [1988] showed that the addition of a controlledwarnof extra space
allowed Rank and SELECT to be supported usin@(log) bit probes, and thus that
SUCCESSOR F-SEARCH and RREDECESSORcould also can be made efficient. Munro
[1996] later showed that these operations can be suppartedli) time. Several fur-
ther improvements to the original approach have been regomcluding some that
compress the bitvector by exploiting zones with lold tlensities (for example, [Clark,
1996, Pagh, 2001, Raman et al., 2002]). However, from aipedstandpoint, the con-
stant factors to implement the data structures describedigh, and these succinct
representations are driven by the desire for fasteniRand SLECT operations, nei-
ther of which is necessary when processing conjunctive &oogueries.

Compressed representations: Compact representations of sets are almost all built
around a simple transformation, which takes a sorted listavhents and converts them
into a set ofl-gaps. Any method for coding the gaps as variable lengthg;aadeuding
Huffman codes, Golomb codes, Eliasandé codes, and static byte- and nibble-based

codes, can then be used to encode the transformed list. Beswoiithese approaches
are presented by Witten et al. [1999] and Zobel and MoffaOf0

Given that there ar€’} = u!/((uv — n)!n!) ways of extracting am-subset from a
universe ofu possibilities, compressed representations have as #ngéetta cost of

u!
(u —n)n!

bits whenn <« u. Several of the codes listed in the previous paragrapmattaicome
close to, this bound. It is also possible to outperform thisstrcase bound if there is
significantclustering within the set, and the. elements in the set are not a random
subset of the available universe. One such code is the bitgiye code of Moffat and
Stuiver [2000], which represents sets using binary codgtsinba non-linear sequence
that makes it sensitive, @daptive, to any non-uniformity. Adaptivity is explored fur-
ther below.

The great drawback of most compressed representationsiisirtability to effi-
ciently support any of the key set operations other thaiw@&ssoRr In particular,
none of F-&ARCH, RANK, and ELECT are efficient. Indeed, in the face of sequential
compression techniques baseddgaps, a search that shifts the current element by
positions require®(d) time. To regain faster FEARCH functionality, additional in-
formation can be added in to compressed set represent&boexample, Moffat and
Zobel [1996] explore adding periodskip information into the compressed set, so that
forward jumps can be taken. They suggest inserting suchhsgnization points ev-
ery O(y/n) positions, and demonstrate improved performance on cotijerBoolean
gueries and pruned ranked queries, compared to sequestiadithg.

More recently, Gupta et al. [2006] describe a two-leveldtrte in which each of
the levels is itself a searchable structure containing gesged information, extending
earlier work by Blandford and Blelloch [2004]. In the Guptaaé method, each block
of elements at the lower level is a compressed sequentisdseptation of a balanced
binary search tree, stored using a pre-order traversalwihda skip pointer inserted
after each node so that its left subtree can be bypassedsktreh is to proceed next
into the right subtree. Sitting on top of these blocks is #hieirdata structure that allows
the correct tree to be quickly identified. By balancing theesiand performance of the
two structures, good performance is achieved.

log C}' = log ~n (1og% + 1.44)

4 Intersection Algorithms

This section reviews methods for intersecting sets in abaged implementations, be-
fore considering the cost of intersecting compressed sets.

Intersecting two sets: There is an interesting duality between set intersectioh-te
niques and integer compression methods. To explore théitydeansider the standard
paradigm for calculating the intersection of two sets thahiown in Algorithm 1, where
n1 = |S| < ny = |T, and each of the elements of the smaller$ét searched for in
turn the larger set, with the search always moving forward.

Assuming an array representationfofthere are a range of options for implement-
ing F-SEARCH. One is to use a full binary search, takif¥glog n») time per operation,

Algorithm 1 Standard two-set intersectioN1ERSECT S, T').
1: without loss of generality assume that= |S| < ny = |T|
2: setA — {}
3: setz — FIRST(S)
4: while z is defineddo
5: sety «— F-SEARCH(T,)
6
7
8

if z =y then
addz to A
setr <« SUCCESSOKS)

andO(nq log ny) time overall. This approach is the dual of thén log u) cost of using
binary codes to store antitem set over the univerde . . u. Another simple approach is
to implement F-8ARCH as a linear search from the current location, so that forsvard
traversal ovet elements, require®(d) time. This approach is the dual of storing a set
using a Unary code, which in turn is equivalent to the use afweebtor.

Better algorithms for array-based intersection also hawa dodes. The Hwang
and Lin [1973] intersection approach corresponds to theofige Golomb code (see
Witten et al. [1999]) to represent a subset. In the Golombecadgap ofd > 1 is
represented by codinigt (d — 1) div b in Unary, and then + (d — 1) modb in Binary,
choosing parametér as (In2) - (u/n) =~ 0.69(u/n). Similarly, in the Hwang and
Lin intersection algorithm a parameter= 0.69((nl + n2)/n;) is computed, and
the F-SEARCH operations in Algorithm 1 are implemented by steppbnigems at a
time from the current location iff", and reverting to a binary search over a rangé of
once a straddling interval has been determined. When Alguorl is coupled with this
Golomb-Hwang-Lin searching method, the time require@(a, log(nz/n1)), which
is worst-case optimal in an information-theoretic sense.

Other integer codes also have duals. The Eliande (see Witten et al. [1999]) is
the dual of the exponential search mechanism of Bentley and¥976] (referred to by
some authors as “galloping” search), and has also been ssebdasis for F-SARCH
operations. In the Eliag code, the representation for a gaplokquiresl + 2|logd] =
O(log d) bits, and a subset of of u elements requires at mas{2 log(u/n) + 1) bits.
Similarly, the Baeza-Yates [2004] non-sequential intetisa algorithm is the dual of
the Interpolative code of Moffat and Stuiver [2000], mengd above. In this method,
the median of the smaller set is located in the larger set Bets are then partitioned,
and two recursive subproblems handled.

Adaptive algorithms: There has also been interest in théaptive complexity of
codes, and hence (in the dual) of adaptive intersection edsthFor example, if all
elements inS happen to be smaller than the first elemerif’jrthen an implementation
of F-SEARCH using linear search, or an exponential search, will exaout¥n,) time.
On the other hand the Golomb-based searching approach-adaptive and still gives
rise to anO(n; log(nz/n1)) execution time, even for highly favorable arrangements.

Intersecting multiple sets: When there are multiple sets to be intersected, as is the
situation in a text retrieval system handling multi-worcgjes, the operations can either
be implemented as a sequence of binary set intersectiors, arsingle operation on

Algorithm 2 : The Max Successor intersection algorithm.
1: without loss of generality assume thai | < [Sz2| < --- <[5

2: setA — {}

3: setz — FIRST(S1)

4: while x is defineddo

5. fori=1to|q| do

6: sety «— F-SEARCH(S;, x)
7 if x # ythen

8: setr «— max(y, SUCCESSORS1))
9: break
10: else ifi = |q| then
11: addr to A
12: setr «+ SUCCESSORS:)

multiple sets. Both approaches have their advantages aadwdintages. Set versus set
methods ¢vs) start with the smallest set, and in turn intersect it aga@ash of the
others, in increasing order of size. Because the pivotabseandidates can only get
smaller, the worst-case cost of this approach in an arragdanplementation is

lql

an log& <ni(lq| — 1)1ogM)

i n ny

where the ordering on the sets is such that< ny < --- < n,. This method is both
simple to implement, and also localized in its data accetenpa— only two sets are in
action at any given time. Either the standard intersectigm@ach shown in Algorithm 1
can be used, or the adaptive Baeza-Yates method can be used.

The other approachiis to process all sets simultaneouslyetermine the elements
in their intersection in an interleaved manner. The simpdggproach is to take each
element of the smallest set in turn, using it aseiminator, and search for it in the
other sets until either it is found in all of them, or is not fmlin one of them. If it is
found, it is then part of the answer; if it is not found in ondlud tests, it is eliminated,
and the next item from the smallest set is taken.

Demaine et al. [2000] suggested that the set ordering sHmuldlynamic, and be
based at all times on the number of remaining elements, sehtba@ost of every oper-
ation is minimized in a greedy sense. As an alternative torta&@-cost of keeping the
collection of sets ordered by their number of unprocességegaBarbay and Kenyon
[2002] suggested that the eliminator be chosen instead fhaset that caused the
previous eliminator to be rejected, so that all sets havegp®rtunity to provide the
eliminator if they are the cause of a big “jump” in the locusaativity. Both of these
modified approaches — referred toaap andseq respectively in the results that appear
below — are only of benefit if the input sets are non-uniforrthwespect to the uni-
verse. Barbay et al. [2006] provide a useful overview of hbe different search and
intersection techniques interact, and summarize a rangeseious work.

Max Successor: We also tested another methadax. It takes eliminators from the
smallest set, but when the eliminator is beaten, takes asetttesliminator the larger of

Original list of d-gaps

1‘+3‘+1‘+1‘+2 +4‘+3‘+1‘+2‘+2‘

Partial index, and list of remaining d—gaps

! |
—

8 / 18 J
i r

+3 +1 +2

+1

Fig. 1. Extracting everyp th document number, and storing it in full in an auxiliaryarin this
examplep = 4, so every fourthi-gap from the list ofi-gaps (top row, shaded entries) is extracted
and expanded and stored in the auxiliary array (middle rtaggther with a byte offset into each
block of p — 1 remainingd-gaps (bottom row).

the item that beat it, or the successor from the first listcPssing then starts at the first
list again. Algorithm 2 describes this new approach.

5 Practical indexing

To provide practical access to compressed sets, we retarcléssic algorithmic theme,
and build a partial index into the list of compresskdaps. Figure 1 sketches the pro-
posed arrangement. Evepyth d-gap is removed from the compressed index list, ex-
panded into a document number, and stored in the auxiliggxnA bit offset (or byte
offset, for byte-aligned codes) is also stored, as showhemtiddle row in Figure 1.
To search for a valug, the auxiliary index is first searched, to determine a coirigi
block. Any of the available searching methods can be emplo®ace the block that
might containz is identified, it is sequentially decoded asidjaps resolved, starting at
the access pointer. The cost of searching a set\aflues is thus at mog(log(n/p))
values accessed for a binary search in the auxiliary indets, @(p) values decoded
during the linear search within the block. Taking= k log n for some constarit gives
search costs that a(logn).

To compute the storage cost of the altered arrangementyseajpipat the underlying
compression method is an efficient one, and that the fullfseboiginal d-gaps is stored
in nlog(u/n) bits. Removing everyth gap multiplies that byp — 1)/p. Each of the
n/p entries in the auxiliary index requirésg v bits for an uncompressed document
number, andog(n log(u/n)) < logn + loglog u bits for the access pointer, totaling

-1
p—nlog 4z (logu + logn + loglog u)
p nop
bits. If we again take = k log n, this simplifies to

log 1
nlog ™+ 1 (24 loslogu)
n k logn

Whenn > logu, the overhead cost of the auxiliary index is thaén/k) bits, with
a search cost aP(k logn) time. In real terms, wheh = 1, the cost of the auxiliary
index is two bits per pointer in addition to the compressedsgje cost of the index lists.

One drawback of this hybrid approach is that EARCH operations over a distance
of d are no longer guaranteed to takélog d) time. For example, a search operation
that shifts the current location forward bdy= log n items in a list containing pointers
must, of necessity, involve sequential decoding withintéet block ofd-gaps, and thus
O(logn) time. One of the objectives of our experiments was to detegrtiie extent to
which this issue affected practical operations.

Compared to thekipped inverted lists of Moffat and Zobel [1996], our blocks are
much shorter, the auxiliary index is maintained separdtelyre main sequence af
gaps rather than interleaved with it, and the auxiliary indestored uncompressed.
These differences add to the space requirement of the @vertiex, but allow faster
F-SEARCH operations, and thus fastesiERSECTcomputation. In recent independent
work, Sanders and Transier [2007] also investigate twell@presentations to improve
intersection in compact sets. The main focus of their work \@riation on most sig-
nificant bit tabling to create buckets of roughly uniformesiSanders and Transier also
consider the possibility of deterministic bucket sizesaimethod similar to the ap-
proach proposed here.

6 Experiments

This section describes the arrangements used to measumecttigtion cost of different
set intersection techniques in an environment typicalxifgearch engines.

Collection and queries: All of our results are based on experiments with a large set
of queries, and theov2 collection 0f426 GB of web data used in therReC Terabyte
Track (seehttp://trec.nist.gov). This collection contains just ovebs million
documents, and abo8T million unique words. For our measurements, words that ap-
peared only one or twice in the collection were assumed todpelled directly in the
vocabulary rather than via index lists, and this meant thtatal of 19,783,975 index
lists were considered. Each list was an ordered sequencaecafitent numbers in the
rangel to u = 25,205,181. Table 1 lists the cost of storing those lists using différen
representations. For example, stored as uncompra8gdeitintegers, the index requires
23 GB, compared to a combinatorial set cost, summed over alldtse of 6 GB. Byte
codes do not attain the latter target, nevertheless theydean attractive space saving
compared to uncompressed integers, and an even greatey sampared to bitvectors.

The queries used against this collection were derived frasatasupplied by Mi-
crosoft as being queries for which at least one of the togethrswer documents was in
the . gov domain, as of early 2005. A total @f7,004 unigue multi-word queries in the
set had conjunctive Boolean matches in ¢@v2 collection. Table 2 shows the distri-
bution of query lengths in the query set, and the range ofize$ snvolved. Note how,
even in two term queries, the most common term appears in thand% of the doc-
uments. The average query length tested a3 which is near the expected average
guery length o.4 [Spink et al., 2001].

Table 1.Total space cost in gigabytes to store (in the center colathoj the inverted lists for the
426 GB TREC GOV2 collection, and (in the right column) the subset of the itee lists referred
to by the experimental query set.

. TREC GOV2 Query Set
Data Representation 19,783,975 words 15,208 words
Bitvector 58,051.4 44.6
Integer B2-bit) 22.6 141
d-gaps, byte code, and auxiliary indéx= 2 8.5 4.4
d-gaps and byte code 7.4 3.8
Combinatorial cost 5.9 2.7

Table 2. Length distribution of th&7,004 queries. The average query lengtl2ig3 terms.

query lengthg| 2 3 4 5 6 7 8 9 10+
number of queries 15,517 7,014 2,678 1,002 384 169 94 44 102
matches ('000) 124 78 56 41 27 15 10 11 3
averagen; ('000) 338 325 348 356 288 248 165 226 112
averagen|, ('000) 1,698 5,725 10,311 14,317 15,927 17,365 17,958 ¥8]40236

Measurement: To carry out experiments, the index lists for th&208 words that
appeared in the query set were extracted from the index is¶te file, as shown
in the right-hand column of Table 1. Low frequency terms arely queried, and the
cost of the bitvector representation drops dramaticaltyti@ other hand, the relative
fractions of the compressed representations suggest thrattiran half of the full index
still needs to be manipulated.

The set of queries was then executed using the various éatéra algorithms. To
process one query, the set of lists pertinent to that quesyread into memory while
the execution clock was stopped; the clock was then monitetgle the query was
executed five times in a row to generate a list of answer dooumenbers irl . . . u;
and then the CPU time taken by the five operations was addeduienéng total, ac-
cording to the length of that query. For example, the timeréed for queries of length
two is the average df x 15,517 = 77,585 executions ofl 5,517 different queries. We
also recorded the number of comparisons performed by eattfothes a check against
previous results, but report only CPU times here.

Array-based intersection: The first question was the extent to which the adaptive
methods were superior to the standard ones. There are tels leywhich adaptivity

is possible — by using exponential search rather than thetwease optimal Golomb
search; and by performing dlf| — 1 merge operations in tandem with an enhanced
choice of eliminator at each step, as described in the pus\section. The results of
these first experiments are shown in Figure 2, where it isnasduthroughout that the
sets are stored as arrays. In the left-hand graph, Golombrsisaused with three multi-
way methods, and thevs approach. The right-hand graph shows the same experiment,
but using exponential search. In both arrangementsib@rdering outperforms the

1000 1000

100 100

Time (msec)

10 10
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Query Length (words) Query Length (words)
Golomb Search Exponential Search

Fig. 2. Efficiency of different intersection algorithms with noaegiential search mechanisms, for
different query lengths in therReC GoV2 dataset, and an array set representation. Metipds
seq, andmax are multi-way methodsiys is the set-versus-set approach.

1000 1000
,g s ~ ////
7 e S --—-bya ’
I N / - +
E 100- Y —-—-bvc 1004 svs+bc
P Y , —— svs+bc+aux
IS P --- svs
10 + 10 4
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Query Length (words) Query Length (words)
Uncompressed Indexing Compressed Indexing

Fig. 3. Efficiency of intersection algorithms for different quegngths in theeREC GOV2 dataset

on a2.8 Ghz Intel Xeon with2 GB of RAM: (a) fast methods, including the use of random
access, whersys is set-vs-set, using exponential seatgf,is set-vs-set using the Baeza-Yates
method and binary search, anat is a bitvector-based evaluation; and (b) two methods that
use compressed data formats, whersbce involves sequential processing of byte codes, and
svs+bc+aux makes use of byte codes indexed by an auxiliary array ith2.

multi-set approaches, presumably as a consequence of teetigitatly localized mem-
ory access pattern. Comparing the two graphsstisemethod benefits slightly from
exponential search. Note also that execution time tendsongitow as more terms are
added to the query — the cost is largely determined by theiénecy of the rarest ele-
ment, and long queries are likely to use at least one lowdgaqy term.

We also tested the binary search-based Baeza-Yates [2@@HAdd) which is adap-
tive by virtue of the search sequence. It operates on twoatedstime, but has little
locality of reference, and was slower than tve approach.

Compressed indexing: Figure 3 compares uncompressed representations with two
different compressed representations, in all cases usingnderlying set-versus-set
approach. In the left-hand graph the three best methodshamens— two using array

256

= bya
128

= svs+bc

64+ svs+bc+aux,k=1
svs+bc+aux,k=2
svs+bc+aux,k=4

32 4 LIS

Average query time (msec/query)

= bvc

4 16 64
Average data used (MB/query)

Fig. 4. Tradeoffs between index cost and query throughput, platsetie average amount of data
processed per query over ait,004 queries, versus the average time taken per query.

representations and non-sequential searching methadisren(labeledbvc) based on
bitvector operations. In the right-hand graph both linderre indexes stored in com-
pressed form using byte codes. In tlve+bc approach, F-8ARCH operations are han-
dled via sequential access and linear search; and isvi¥bc+aux method, through
the use of an auxiliary index array. Use of the index arraptlyéncreases processing
speed on long queries, and allows intersections to be ha@ndtanes very close to the
uncompressesks cost in the left-hand graph.

Disk traffic: One aspect of our experiments that is not completely fditbfthe opera-
tions of an information retrieval system is that we have neasured disk traffic as part
of the query cost. Figure 4 shows data transfer volumesaa@tainst query time, in
both cases averaged over the mi26f004 queries. Thavs+bc+aux methods, using the
auxiliary array, require only slightly more disk traffic théhe fully-compressess+bc
approach, and execute in as little as half the time. The ied@ompressed methods
are slower than the uncompressed+exp method, using exponential search, but the
latter involves more disk traffic. Thevc bitvector approach also provides a surprising
blend of data transfer economy (because most query termelatezely common in
the collection) and query speed (because most queries amng. shmay be that hybrid
approaches involving some terms stored as bitvectors ame ssing byte codes are
capable of even faster performance, and we plan to expl@eption next.

Acknowledgment. The second author was funded by the Australian Research-Coun
cil, and by the ARC Center for Perceptive and Intelligent Maes in Complex Envi-
ronments. National ICT Australia (NICTA) is funded by the gitalian Government’s
Backing Australia’s Ability initiative, in part through ghAustralian Research Council.

References

R. Baeza-Yates. A fast set intersection algorithm for sbgequences. In S. C. Sahinalp,
S. Muthukrishnan, and U. Dogrusoz, editoPspceedings of the 15th Annual Symposium
on Combinatorial Pattern Matching (CPM 2004), volume 3109 ofLNCS, pages 400—-408.
Springer, July 2004.

J. Barbay and C. Kenyon. Adaptive intersection &fldreshold problems. In D. Eppstein, editor,
Proceedings of the 13th Annual ACM-SAM Symposium on Discrete Algorithms (SODA 2002),
pages 390-399, January 2002.

J. Barbay, A. Lopez-Ortiz, and T. Lu. Faster adaptive setrgections for text searching. In
C. Alvarez and M. J. Serna, editorExperimental Algorithms, 5th International Workshop
(WEA 2006), volume 4007 oL NCS pages 146-157, May 2006.

J. Bentley and A. C-C. Yao. An almost optimal algorithm foboaonded searchindnformation
Processing Letters, 5(3):82-87, August 1976.

D. K. Blandford and G. E. Blelloch. Compact representatioherdered sets. In J. I. Munro,
editor, Proceedings of the 15th Annual ACM-S AM Symposium on Discrete Algorithms (SODA
2004), pages 11-19, January 2004.

D. Clark. Compact PAT trees. PhD thesis, University of Waterloo, 1996.

E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Adaptive sgersections, unions, and dif-
ferences. IrProceedings of the 11th Annual ACM-SAM Symposium on Discrete Algorithms
(SODA 2000), pages 743-752, January 2000.

A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressetiodiaries: Space measures, data
sets, and experiments. In Blvarez and M. J. Serna, editorBroceedings of the 5th Inter-
national Workshop on Experimental Algorithms (WEA 2006), volume 4007 ofLNCS pages
158-169, May 2006.

F. K. Hwang and S. Lin. A simple algorithm for merging two d@isit linearly ordered listS AM
Journal on Computing, 1:31-39, 1973.

G. JacobsonSuccinct static data structures. PhD thesis, Carnegie Mellon University, 1988.

A. Moffat and L. Stuiver. Binary interpolative coding forfe€tive index compressiorinforma-
tion Retrieval, 3(1):25-47, July 2000.

A. Moffat and J. Zobel. Self-indexing inverted files for faskt retrieval. ACM Transactions on
Information Systems, 14(4):349-379, 1996.

J. I. Munro. Tables. In V. Chandru and V. Vinay, editdPspceedings of the 16th Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science (STACS
1996), volume 1180 of.NCS, pages 37-42. Springer, December 1996.

R. Pagh. Low redundancy in static dictionaries with cortsiame query.S AM Journal on Com-
puting, 31(2):353-363, 2001. URhttp://www.brics.dk/ pagh/papers/dict-jour.
pdf.

R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictemwith applications to encod-
ing k-ary trees and multisets. In J. I. Munro, edifeirpceedings of the 13th Annual ACM-S AM
Symposium on Discrete Algorithms (SODA 2002), pages 233—-242. Society for Industrial and
Applied Mathematics, January 2002.

P. Sanders and F. Transier. Intersection in integer indertéices. InProceedings of the 9th
Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pages 71-83. SIAM,
January 2007.

A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic. Seagctiie web: The public and their
queries.Journal of the American Society for Information Science, 52(3):226-234, 2001.

I. H. Witten, A. Moffat, and T. A. Bell.Managing Gigabytes: Compressing and |ndexing Docu-
ments and Images. Morgan Kaufmann, San Francisco, second edition, 1999.

J. Zobel and A. Moffat. Inverted files for text search engin@€M Computing Surveys, 38(2):
1-56, 2006.

