
Compact Set Representation for Information Retrieval

J. Shane Culpepper and Alistair Moffat

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Victoria 3010, Australia

Abstract. Conjunctive Boolean queries are a fundamental operation inweb search
engines. These queries can be reduced to the problem of intersecting ordered sets
of integers, where each set represents the documents containing one of the query
terms. But there is tension between the desire to store the lists effectively, in a
compressed form, and the desire to carry out intersection operations efficiently,
using non-sequential processing modes. In this paper we evaluate intersection
algorithms on compressed sets, comparing them to the best non-sequential array-
based intersection algorithms. By adding a simple, low-cost, auxiliary index, we
show that compressed storage need not hinder efficient and high-speed intersec-
tion operations.

1 Introduction

Conjunctive Boolean queries are a fundamental operation inmodern search engines.
They are used for both traditionalAND-mode querying, and also in ranked querying
environments when dynamic pruning techniques are used, or when pre-computed static
scores such as PageRank contribute to answer ordering [Zobel and Moffat, 2006].

In abstraction, a conjunctive queryq is handled by performing a|q|-way intersec-
tion over|q| ordered sets of integers, with each set being drawn from a pre-computed
index and representing the documents containing one of the query terms. In this ab-
straction, any efficient algorithm can be used to compute theset intersection. But there
is considerable tension between the desire to compress the index lists, and the need
to process them using efficient intersection algorithms. Inparticular, the majority of
set-versus-set and multi-way merging algorithms that havebeen described make use
of non-sequential access to the elements of the set and are thus at odds with standard
sequential decompression methods for compressed data.

In this paper we evaluate intersection algorithms on compressed sets, comparing
them to the best array-based intersection algorithms. Because sequential decompres-
sion implies linear search, compressed methods seem fated to be slower than array-
based alternatives. But, by adding a simple and low-cost auxiliary index, we show that
compressed storage need not hinder efficient and high-speedintersection operations.

2 Sets and Set Operations

Techniques for the manipulation of sets and set data have been a rich area of research
for several decades. At the most basic level, set manipulation can be reduced to the
classicaldictionary problem, with three key operations needed:

INSERT(S, x) ReturnS ∪ x.
DELETE(S, x) ReturnS − x.
MEMBER(S, x) ReturnTRUE and a pointer tox if x ∈ S; otherwise return

FALSE.
Standard efficient structures supporting this group of operations include binary, bal-
anced, and self-adjusting trees; hash tables; and so on. If the universe over which the
sets are drawn is dense, and readily mapped to the integers1 . . . u, for some valueu,
then direct-access structures such thebitvector can be used, in which the space required
is proportional tou rather than ton, the number of elements in the set. Different families
of operations may be needed in some applications. For example:

INTERSECT(S, T) ReturnS ∩ T .
JOIN(S, T) ReturnS ∪ T .
DIFFERENCE(S, T) ReturnS − T .

These high-level set operations are often implemented using a number of more primitive
operations. In the next group, there is a notion of “the current element”, and as the
sequence of operations unfolds, the locus of activity proceeds from one element to
another, and the current element migrates around the set:

PREDECESSOR(S) Return a pointer to the element inS that immediately pre-
cedes the current one.

SUCCESSOR(S) Return a pointer to the element inS that immediately fol-
lows the current one.

F-SEARCH(S, x) Return a pointer to the least elementy ∈ S for which
y ≥ x, wherex is greater than the value of the current
element.

For example, intersection operations on sets of comparablesize can be readily be im-
plemented using the SUCCESSORoperation; and intersection and union operations on
sets of differing size can be implemented using the F-SEARCH operation, as described
in more detail in Section 3.

The three mid-level set operations can, in turn, be implemented on top of two basic
set operations:

RANK (S, x) Return|{y | y ∈ S andy ≤ x}|.
SELECT(S, r) Return a pointer to ther th largest element inS.

For example, SUCCESSOR(S) can be implemented as SELECT(S, 1 + RANK(curr)),
wherecurr is the value of the current item. In addition, once the RANK and SELECT

operations are available, the use of strategically chosen indices in a sequence of SELECT

operations can be used to provide an efficient non-sequential implementation of the
F-SEARCH operation.

In this paper we are primarily interested in INTERSECToperations, implementing
them via a sequence of SUCCESSORand/or F-SEARCH calls. To set the scene for our
evaluation of techniques for implementing these operations, the next section briefly
summarizes several key data structures that can be used to represent sets.

3 Set Representations

There are several fundamentally different ways in which sets of integers can be stored,
with different attributes, and different ways of handling the basic set operations.

Array of integers: A simple and efficient representation for a set is to store it in a
sorted array of integers. For example, a set ofn = 15 objects over the universe1 . . . u,
with (say)u = 32, can be stored in15 words, or, via bit-packing techniques, in15 five-
bit binary numbers. More generally, a set ofn items each in the range1 . . . u can be
stored inn log u bits. Implementation of the operation SELECT in O(1) time is imme-
diate, via array indexing; and MEMBER, RANK , and F-SEARCH requireO(log n) time,
O(log n) time, andO(log d) time respectively, whered is the number of elements that
the current position is shifted by. Large-scale operationssuch as JOIN and DIFFERENCE

takeO(n2) time, wheren1 ≤ n2 are the sizes of the two sets involved, because every
member of the larger of the two sets might need to be listed in the output array. The
final operation, INTERSECT, is considered in more detail in the next section, but can be
implemented to requireO(n1 log(n2/n1)) time in the worst case.

Bitvectors: Another classic set representation is as a bitvector – au-bit sequence in
which thex th bit is a1 if and only if x ∈ S. Use of a bitvector shifts the cost balance
of the various set operations. All of INSERT, DELETE, and MEMBER takeO(1) time;
but JOIN, DIFFERENCE, and INTERSECTnow takeO(u) time, if an output set in the
same format is to be constructed. The F-SEARCH, RANK and SELECT operations are
also expensive if unadorned bitvector representations areused. But in text querying
applications, the output set need not be of the same data type, and can be generated as
an array of integers. That means thatO(n1)-time intersection is possible via a sequence
of MEMBER operations, wheren1 is the size of the smaller set.

A drawback of bitvectors is that theirO(u) space requirement is significantly more
than the corresponding array representation whenn ≪ u. Also, if the application re-
quires PREDECESSORand SUCCESSORquery support then the basic bitvector repre-
sentation may not be efficient.

Jacobson [1988] showed that the addition of a controlled amount of extra space
allowed RANK and SELECT to be supported usingO(log u) bit probes, and thus that
SUCCESSOR, F-SEARCH and PREDECESSORcould also can be made efficient. Munro
[1996] later showed that these operations can be supported in O(1) time. Several fur-
ther improvements to the original approach have been reported, including some that
compress the bitvector by exploiting zones with low “1” densities (for example, [Clark,
1996, Pagh, 2001, Raman et al., 2002]). However, from a practical standpoint, the con-
stant factors to implement the data structures described are high, and these succinct
representations are driven by the desire for faster RANK and SELECT operations, nei-
ther of which is necessary when processing conjunctive Boolean queries.

Compressed representations:Compact representations of sets are almost all built
around a simple transformation, which takes a sorted list ofelements and converts them
into a set ofd-gaps. Any method for coding the gaps as variable length codes, including
Huffman codes, Golomb codes, Eliasγ andδ codes, and static byte- and nibble-based

codes, can then be used to encode the transformed list. Examples of these approaches
are presented by Witten et al. [1999] and Zobel and Moffat [2006].

Given that there areCu
n = u!/((u − n)!n!) ways of extracting ann-subset from a

universe ofu possibilities, compressed representations have as their target a cost of

log Cu
n = log

u!

(u − n)!n!
≈ n

(

log
u

n
+ 1.44

)

bits whenn ≪ u. Several of the codes listed in the previous paragraph attain, or come
close to, this bound. It is also possible to outperform this worst-case bound if there is
significantclustering within the set, and then elements in the set are not a random
subset of the available universe. One such code is the Interpolative code of Moffat and
Stuiver [2000], which represents sets using binary codes, but in a non-linear sequence
that makes it sensitive, oradaptive, to any non-uniformity. Adaptivity is explored fur-
ther below.

The great drawback of most compressed representations is their inability to effi-
ciently support any of the key set operations other than SUCCESSOR. In particular,
none of F-SEARCH, RANK , and SELECT are efficient. Indeed, in the face of sequential
compression techniques based ond-gaps, a search that shifts the current element byd
positions requiresO(d) time. To regain faster F-SEARCH functionality, additional in-
formation can be added in to compressed set representation.For example, Moffat and
Zobel [1996] explore adding periodicskip information into the compressed set, so that
forward jumps can be taken. They suggest inserting such synchronization points ev-
eryO(

√
n) positions, and demonstrate improved performance on conjunctive Boolean

queries and pruned ranked queries, compared to sequential decoding.
More recently, Gupta et al. [2006] describe a two-level structure in which each of

the levels is itself a searchable structure containing compressed information, extending
earlier work by Blandford and Blelloch [2004]. In the Gupta et al. method, each block
of elements at the lower level is a compressed sequential representation of a balanced
binary search tree, stored using a pre-order traversal, andwith a skip pointer inserted
after each node so that its left subtree can be bypassed if thesearch is to proceed next
into the right subtree. Sitting on top of these blocks is a further data structure that allows
the correct tree to be quickly identified. By balancing the sizes and performance of the
two structures, good performance is achieved.

4 Intersection Algorithms

This section reviews methods for intersecting sets in array-based implementations, be-
fore considering the cost of intersecting compressed sets.

Intersecting two sets: There is an interesting duality between set intersection tech-
niques and integer compression methods. To explore that duality, consider the standard
paradigm for calculating the intersection of two sets that is shown in Algorithm 1, where
n1 = |S| ≤ n2 = |T |, and each of the elements of the smaller setS is searched for in
turn the larger set, with the search always moving forward.

Assuming an array representation ofT , there are a range of options for implement-
ing F-SEARCH. One is to use a full binary search, takingO(log n2) time per operation,

Algorithm 1 Standard two-set intersection, INTERSECT(S, T).
1: without loss of generality assume thatn1 = |S| ≤ n2 = |T |
2: setA← {}
3: setx← FIRST(S)
4: while x is defineddo
5: sety ← F-SEARCH(T, x)
6: if x = y then
7: addx to A

8: setx← SUCCESSOR(S)

andO(n1 log n2) time overall. This approach is the dual of theO(n log u) cost of using
binary codes to store ann-item set over the universe1 . . . u. Another simple approach is
to implement F-SEARCH as a linear search from the current location, so that forwards
traversal overd elements, requiresO(d) time. This approach is the dual of storing a set
using a Unary code, which in turn is equivalent to the use of a bitvector.

Better algorithms for array-based intersection also have dual codes. The Hwang
and Lin [1973] intersection approach corresponds to the useof a Golomb code (see
Witten et al. [1999]) to represent a subset. In the Golomb code, a gap ofd ≥ 1 is
represented by coding1+(d−1) div b in Unary, and then1+(d−1) modb in Binary,
choosing parameterb as (ln 2) · (u/n) ≈ 0.69(u/n). Similarly, in the Hwang and
Lin intersection algorithm a parameterb = 0.69((n1 + n2)/n1) is computed, and
the F-SEARCH operations in Algorithm 1 are implemented by steppingb items at a
time from the current location inT , and reverting to a binary search over a range ofb
once a straddling interval has been determined. When Algorithm 1 is coupled with this
Golomb-Hwang-Lin searching method, the time required isO(n1 log(n2/n1)), which
is worst-case optimal in an information-theoretic sense.

Other integer codes also have duals. The Eliasγ code (see Witten et al. [1999]) is
the dual of the exponential search mechanism of Bentley and Yao [1976] (referred to by
some authors as “galloping” search), and has also been used as a basis for F-SEARCH

operations. In the Eliasγ code, the representation for a gap ofd requires1+2⌊log d⌋ =
O(log d) bits, and a subset ofn of u elements requires at mostn (2 log(u/n) + 1) bits.
Similarly, the Baeza-Yates [2004] non-sequential intersection algorithm is the dual of
the Interpolative code of Moffat and Stuiver [2000], mentioned above. In this method,
the median of the smaller set is located in the larger set. Both sets are then partitioned,
and two recursive subproblems handled.

Adaptive algorithms: There has also been interest in theadaptive complexity of
codes, and hence (in the dual) of adaptive intersection methods. For example, if all
elements inS happen to be smaller than the first element inT , then an implementation
of F-SEARCH using linear search, or an exponential search, will executein O(n1) time.
On the other hand the Golomb-based searching approach is non-adaptive and still gives
rise to anO(n1 log(n2/n1)) execution time, even for highly favorable arrangements.

Intersecting multiple sets: When there are multiple sets to be intersected, as is the
situation in a text retrieval system handling multi-word queries, the operations can either
be implemented as a sequence of binary set intersections, oras a single operation on

Algorithm 2 : The Max Successor intersection algorithm.
1: without loss of generality assume that|S1| ≤ |S2| ≤ · · · ≤ |S|q||
2: setA← {}
3: setx← FIRST(S1)
4: while x is defineddo
5: for i = 1 to |q| do
6: sety ← F-SEARCH(Si, x)
7: if x 6= y then
8: setx← max(y, SUCCESSOR(S1))
9: break

10: else ifi = |q| then
11: addx to A

12: setx← SUCCESSOR(S1)

multiple sets. Both approaches have their advantages and disadvantages. Set versus set
methods (svs) start with the smallest set, and in turn intersect it against each of the
others, in increasing order of size. Because the pivotal setof candidates can only get
smaller, the worst-case cost of this approach in an array-based implementation is

|q|
∑

i=2

n1 log
ni

n1

≤ n1(|q| − 1) log
n|q|

n1

,

where the ordering on the sets is such thatn1 ≤ n2 ≤ · · · ≤ n|q|. This method is both
simple to implement, and also localized in its data access pattern – only two sets are in
action at any given time. Either the standard intersection approach shown in Algorithm 1
can be used, or the adaptive Baeza-Yates method can be used.

The other approach is to process all sets simultaneously, and determine the elements
in their intersection in an interleaved manner. The simplest approach is to take each
element of the smallest set in turn, using it as aneliminator, and search for it in the
other sets until either it is found in all of them, or is not found in one of them. If it is
found, it is then part of the answer; if it is not found in one ofthe tests, it is eliminated,
and the next item from the smallest set is taken.

Demaine et al. [2000] suggested that the set ordering shouldbe dynamic, and be
based at all times on the number of remaining elements, so that the cost of every oper-
ation is minimized in a greedy sense. As an alternative to themeta-cost of keeping the
collection of sets ordered by their number of unprocessed values, Barbay and Kenyon
[2002] suggested that the eliminator be chosen instead fromthe set that caused the
previous eliminator to be rejected, so that all sets have theopportunity to provide the
eliminator if they are the cause of a big “jump” in the locus ofactivity. Both of these
modified approaches – referred to asadp andseq respectively in the results that appear
below – are only of benefit if the input sets are non-uniform with respect to the uni-
verse. Barbay et al. [2006] provide a useful overview of how the different search and
intersection techniques interact, and summarize a range ofprevious work.

Max Successor: We also tested another method,max. It takes eliminators from the
smallest set, but when the eliminator is beaten, takes as thenext eliminator the larger of

Partial index, and list of remaining d−gaps

Original list of d−gaps

+3 +1 +4 +3 +1 +2+1

1 +3 +1 +1 +2 +4 +3 +1 +2 +2

1 188

Fig. 1. Extracting everyp th document number, and storing it in full in an auxiliary array. In this
examplep = 4, so every fourthd-gap from the list ofd-gaps (top row, shaded entries) is extracted
and expanded and stored in the auxiliary array (middle row),together with a byte offset into each
block ofp− 1 remainingd-gaps (bottom row).

the item that beat it, or the successor from the first list. Processing then starts at the first
list again. Algorithm 2 describes this new approach.

5 Practical indexing

To provide practical access to compressed sets, we return toa classic algorithmic theme,
and build a partial index into the list of compressedd-gaps. Figure 1 sketches the pro-
posed arrangement. Everyp th d-gap is removed from the compressed index list, ex-
panded into a document number, and stored in the auxiliary index. A bit offset (or byte
offset, for byte-aligned codes) is also stored, as shown in the middle row in Figure 1.
To search for a valuex, the auxiliary index is first searched, to determine a containing
block. Any of the available searching methods can be employed. Once the block that
might containx is identified, it is sequentially decoded andd-gaps resolved, starting at
the access pointer. The cost of searching a set ofn values is thus at mostO(log(n/p))
values accessed for a binary search in the auxiliary index, plus O(p) values decoded
during the linear search within the block. Takingp = k log n for some constantk gives
search costs that areO(log n).

To compute the storage cost of the altered arrangement, suppose that the underlying
compression method is an efficient one, and that the full set of n originald-gaps is stored
in n log(u/n) bits. Removing everyp th gap multiplies that by(p − 1)/p. Each of the
n/p entries in the auxiliary index requireslog u bits for an uncompressed document
number, andlog(n log(u/n)) ≤ log n + log log u bits for the access pointer, totaling

p − 1

p
n log

u

n
+

n

p
(log u + log n + log log u)

bits. If we again takep = k log n, this simplifies to

n log
u

n
+

n

k

(

2 +
log log u

log n

)

.

Whenn ≥ log u, the overhead cost of the auxiliary index is thusO(n/k) bits, with
a search cost ofO(k log n) time. In real terms, whenk = 1, the cost of the auxiliary
index is two bits per pointer in addition to the compressed storage cost of the index lists.

One drawback of this hybrid approach is that F-SEARCH operations over a distance
of d are no longer guaranteed to takeO(log d) time. For example, a search operation
that shifts the current location forward byd = log n items in a list containingn pointers
must, of necessity, involve sequential decoding within thenext block ofd-gaps, and thus
O(log n) time. One of the objectives of our experiments was to determine the extent to
which this issue affected practical operations.

Compared to theskipped inverted lists of Moffat and Zobel [1996], our blocks are
much shorter, the auxiliary index is maintained separatelyto the main sequence ofd-
gaps rather than interleaved with it, and the auxiliary index is stored uncompressed.
These differences add to the space requirement of the inverted index, but allow faster
F-SEARCH operations, and thus faster INTERSECTcomputation. In recent independent
work, Sanders and Transier [2007] also investigate two-level representations to improve
intersection in compact sets. The main focus of their work isa variation on most sig-
nificant bit tabling to create buckets of roughly uniform size. Sanders and Transier also
consider the possibility of deterministic bucket sizes, ina method similar to the ap-
proach proposed here.

6 Experiments

This section describes the arrangements used to measure theexecution cost of different
set intersection techniques in an environment typical of text search engines.

Collection and queries: All of our results are based on experiments with a large set
of queries, and theGOV2 collection of426GB of web data used in theTREC Terabyte
Track (seehttp://trec.nist.gov). This collection contains just over25 million
documents, and about87 million unique words. For our measurements, words that ap-
peared only one or twice in the collection were assumed to be handled directly in the
vocabulary rather than via index lists, and this meant that atotal of 19,783,975 index
lists were considered. Each list was an ordered sequence of document numbers in the
range1 to u = 25,205,181. Table 1 lists the cost of storing those lists using different
representations. For example, stored as uncompressed32-bit integers, the index requires
23 GB, compared to a combinatorial set cost, summed over all thelists, of6 GB. Byte
codes do not attain the latter target, nevertheless they provide an attractive space saving
compared to uncompressed integers, and an even greater saving compared to bitvectors.

The queries used against this collection were derived from aset supplied by Mi-
crosoft as being queries for which at least one of the top three answer documents was in
the.gov domain, as of early 2005. A total of27,004 unique multi-word queries in the
set had conjunctive Boolean matches in theGOV2 collection. Table 2 shows the distri-
bution of query lengths in the query set, and the range of set sizes involved. Note how,
even in two term queries, the most common term appears in morethan5% of the doc-
uments. The average query length tested was2.73 which is near the expected average
query length of2.4 [Spink et al., 2001].

Table 1.Total space cost in gigabytes to store (in the center column)all of the inverted lists for the
426 GB TREC GOV2 collection, and (in the right column) the subset of the inverted lists referred
to by the experimental query set.

Data Representation
TREC GOV2 Query Set

19,783,975 words 15,208 words
Bitvector 58,051.4 44.6
Integer (32-bit) 22.6 14.1
d-gaps, byte code, and auxiliary index,k = 2 8.5 4.4
d-gaps and byte code 7.4 3.8
Combinatorial cost 5.9 2.7

Table 2.Length distribution of the27,004 queries. The average query length is2.73 terms.

query length|q| 2 3 4 5 6 7 8 9 10+
number of queries 15,517 7,014 2,678 1,002 384 169 94 44 102
matches (’000) 124 78 56 41 27 15 10 11 3
averagen1 (’000) 338 325 348 356 288 248 165 226 112
averagen|q| (’000) 1,698 5,725 10,311 14,317 15,927 17,365 17,958 18,407 19,236

Measurement: To carry out experiments, the index lists for the15,208 words that
appeared in the query set were extracted from the index into aseparate file, as shown
in the right-hand column of Table 1. Low frequency terms are rarely queried, and the
cost of the bitvector representation drops dramatically. On the other hand, the relative
fractions of the compressed representations suggest that more than half of the full index
still needs to be manipulated.

The set of queries was then executed using the various intersection algorithms. To
process one query, the set of lists pertinent to that query was read into memory while
the execution clock was stopped; the clock was then monitored while the query was
executed five times in a row to generate a list of answer document numbers in1 . . . u;
and then the CPU time taken by the five operations was added to arunning total, ac-
cording to the length of that query. For example, the time recorded for queries of length
two is the average of5 × 15,517 = 77,585 executions of15,517 different queries. We
also recorded the number of comparisons performed by each method, as a check against
previous results, but report only CPU times here.

Array-based intersection: The first question was the extent to which the adaptive
methods were superior to the standard ones. There are two levels at which adaptivity
is possible – by using exponential search rather than the worst-case optimal Golomb
search; and by performing all|q| − 1 merge operations in tandem with an enhanced
choice of eliminator at each step, as described in the previous section. The results of
these first experiments are shown in Figure 2, where it is assumed throughout that the
sets are stored as arrays. In the left-hand graph, Golomb search is used with three multi-
way methods, and thesvs approach. The right-hand graph shows the same experiment,
but using exponential search. In both arrangements thesvs ordering outperforms the

2 4 6 8 10

Query Length (words)

10

100

1000

T
im

e
(m

se
c)

Golomb Search

adp
seq
max
svs

2 4 6 8 10

Query Length (words)

10

100

1000

Exponential Search

adp
seq
max
svs

Fig. 2.Efficiency of different intersection algorithms with non-sequential search mechanisms, for
different query lengths in theTREC GOV2 dataset, and an array set representation. Methodsadp,
seq, andmax are multi-way methods;svs is the set-versus-set approach.

2 4 6 8 10

Query Length (words)

10

100

1000

T
im

e
(m

se
c)

Uncompressed Indexing

bya
bvc
svs

2 4 6 8 10

Query Length (words)

10

100

1000

Compressed Indexing

svs+bc
svs+bc+aux

Fig. 3.Efficiency of intersection algorithms for different query lengths in theTREC GOV2 dataset
on a 2.8 Ghz Intel Xeon with2 GB of RAM: (a) fast methods, including the use of random
access, wheresvs is set-vs-set, using exponential search,bya is set-vs-set using the Baeza-Yates
method and binary search, andbvc is a bitvector-based evaluation; and (b) two methods that
use compressed data formats, wheresvs+bc involves sequential processing of byte codes, and
svs+bc+aux makes use of byte codes indexed by an auxiliary array withk = 2.

multi-set approaches, presumably as a consequence of the more tightly localized mem-
ory access pattern. Comparing the two graphs, thesvs method benefits slightly from
exponential search. Note also that execution time tends notto grow as more terms are
added to the query – the cost is largely determined by the frequency of the rarest ele-
ment, and long queries are likely to use at least one low-frequency term.

We also tested the binary search-based Baeza-Yates [2004] method, which is adap-
tive by virtue of the search sequence. It operates on two setsat a time, but has little
locality of reference, and was slower than thesvs approach.

Compressed indexing: Figure 3 compares uncompressed representations with two
different compressed representations, in all cases using an underlying set-versus-set
approach. In the left-hand graph the three best methods are shown – two using array

4 16 64

Average data used (MB/query)

32

64

128

256

A
ve

ra
ge

 q
ue

ry
 ti

m
e

(m
se

c/
qu

er
y)

 svs

 bya

 bvc

 svs+bc

 svs+bc+aux,k=1
 svs+bc+aux,k=2

 svs+bc+aux,k=4

Fig. 4.Tradeoffs between index cost and query throughput, plottedas the average amount of data
processed per query over all27,004 queries, versus the average time taken per query.

representations and non-sequential searching methods, and one (labeledbvc) based on
bitvector operations. In the right-hand graph both lines refer to indexes stored in com-
pressed form using byte codes. In thesvs+bc approach, F-SEARCH operations are han-
dled via sequential access and linear search; and in thesvs+bc+aux method, through
the use of an auxiliary index array. Use of the index array greatly increases processing
speed on long queries, and allows intersections to be handled in times very close to the
uncompressedsvs cost in the left-hand graph.

Disk traffic: One aspect of our experiments that is not completely faithful to the opera-
tions of an information retrieval system is that we have not measured disk traffic as part
of the query cost. Figure 4 shows data transfer volumes plotted against query time, in
both cases averaged over the mix of27,004 queries. Thesvs+bc+aux methods, using the
auxiliary array, require only slightly more disk traffic than the fully-compressedsvs+bc
approach, and execute in as little as half the time. The indexed compressed methods
are slower than the uncompressedsvs+exp method, using exponential search, but the
latter involves more disk traffic. Thebvc bitvector approach also provides a surprising
blend of data transfer economy (because most query terms arerelatively common in
the collection) and query speed (because most queries are short). It may be that hybrid
approaches involving some terms stored as bitvectors and some using byte codes are
capable of even faster performance, and we plan to explore this option next.

Acknowledgment. The second author was funded by the Australian Research Coun-
cil, and by the ARC Center for Perceptive and Intelligent Machines in Complex Envi-
ronments. National ICT Australia (NICTA) is funded by the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Research Council.

References

R. Baeza-Yates. A fast set intersection algorithm for sorted sequences. In S. C. Sahinalp,
S. Muthukrishnan, and U. Dogrusöz, editors,Proceedings of the 15th Annual Symposium
on Combinatorial Pattern Matching (CPM 2004), volume 3109 ofLNCS, pages 400–408.
Springer, July 2004.

J. Barbay and C. Kenyon. Adaptive intersection andt-threshold problems. In D. Eppstein, editor,
Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002),
pages 390–399, January 2002.

J. Barbay, A. López-Ortiz, and T. Lu. Faster adaptive set intersections for text searching. In
C. Àlvarez and M. J. Serna, editors,Experimental Algorithms, 5th International Workshop
(WEA 2006), volume 4007 ofLNCS, pages 146–157, May 2006.

J. Bentley and A. C-C. Yao. An almost optimal algorithm for unbounded searching.Information
Processing Letters, 5(3):82–87, August 1976.

D. K. Blandford and G. E. Blelloch. Compact representationsof ordered sets. In J. I. Munro,
editor,Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2004), pages 11–19, January 2004.

D. Clark. Compact PAT trees. PhD thesis, University of Waterloo, 1996.
E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive setintersections, unions, and dif-

ferences. InProceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), pages 743–752, January 2000.

A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. Compressed dictionaries: Space measures, data
sets, and experiments. In C.Àlvarez and M. J. Serna, editors,Proceedings of the 5th Inter-
national Workshop on Experimental Algorithms (WEA 2006), volume 4007 ofLNCS, pages
158–169, May 2006.

F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly ordered list.SIAM
Journal on Computing, 1:31–39, 1973.

G. Jacobson.Succinct static data structures. PhD thesis, Carnegie Mellon University, 1988.
A. Moffat and L. Stuiver. Binary interpolative coding for effective index compression.Informa-

tion Retrieval, 3(1):25–47, July 2000.
A. Moffat and J. Zobel. Self-indexing inverted files for fasttext retrieval.ACM Transactions on

Information Systems, 14(4):349–379, 1996.
J. I. Munro. Tables. In V. Chandru and V. Vinay, editors,Proceedings of the 16th Annual Con-

ference on Foundations of Software Technology and Theoretical Computer Science (STACS
1996), volume 1180 ofLNCS, pages 37–42. Springer, December 1996.

R. Pagh. Low redundancy in static dictionaries with constant time query.SIAM Journal on Com-
puting, 31(2):353–363, 2001. URLhttp://www.brics.dk/~pagh/papers/dict-jour.
pdf.

R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encod-
ing k-ary trees and multisets. In J. I. Munro, editor,Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2002), pages 233–242. Society for Industrial and
Applied Mathematics, January 2002.

P. Sanders and F. Transier. Intersection in integer inverted indices. InProceedings of the 9th
Workshop on Algorithm Engineering and Experiments (ALENEX 2007), pages 71–83. SIAM,
January 2007.

A. Spink, D. Wolfram, B. J. Jansen, and T. Saracevic. Searching the web: The public and their
queries.Journal of the American Society for Information Science, 52(3):226–234, 2001.

I. H. Witten, A. Moffat, and T. A. Bell.Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann, San Francisco, second edition, 1999.

J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys, 38(2):
1–56, 2006.

