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Conjunctive Boolean queries are a key component of modern information retrieval systems, espe-
cially when web-scale repositories are being searched. A conjunctive query q is equivalent to a
|g|-way intersection over ordered sets of integers, where each set represents the documents con-
taining one of the terms, and each integer in each set is an ordinal document identifier. As is the
case with many computing applications, there is tension between the way in which the data is rep-
resented, and the ways in which it is to be manipulated. In particular, the sets representing index
data for typical document collections are highly compressible, but are processed using random
access techniques, meaning that methods for carrying out set intersections must be alert to issues
to do with access patterns and data representation. Our purpose in this paper is to explore these
tradeoffs, by investigating intersection techniques that make use of both uncompressed “integer”
representations, as well as compressed arrangements. We also propose a simple hybrid method
that provides both compact storage, and also faster intersection computations for conjunctive
querying than is possible even with uncompressed representations.

Categories and Subject Descriptors: EDafa Storage Representations]: Composite structures; H.3.2r{for-
mation Storage]: File organization; H.3.3lnformation Search and Retrieval]: Search process

Additional Key Words and Phrases: Compact data structures, information retrieval, set intersec-
tion, set representation, bitvector, byte-code

1. INTRODUCTION

The computation of set intersections is essential in infdiom retrieval systems. The dom-
inant indexing data structure leveraged by search engirtbsinverted index [Witten et al.
1999; Zobel and Moffat 2006]. In an inverted index, an ordeset of document identifiers
referred to as ainverted list or postings list is stored for each term that appears in the
collection, identifying which documents contain the terfthese lists are then processed
via conjunctive Boolean queries in order to identify thesetlof documents which contain
all of a given set of search terms — tbanjunction, or intersection of the sets indicated by
the lists.

The literature describes a range of techniques for comgustit intersections, falling
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broadly into two groupings:

—approaches that assume that the set are stored as sosgsi afrimtegers, and thus that
thedth integer in the list can be accessedI(l) time; and

—approaches that assume that the lists are stored and edcesguentially, possibly in
some compressed form, and thus that accessing thénteger in the list might take
time that grows as a function df even if it is sublinear inl.

Our presentation in this paper first explores the executidrcast of methods based around
these two quite different starting points, and evaluates telative performance, assuming
throughout that all of the required data is being held in aneéhccess memory. We then
re-visit a third set representation, one that is usuallyngised as being inordinately ex-
pensive for storing index data, but one that with judicioahcing of concerns provides
a notable speed up of set intersection operations, withduihg greatly to the overall cost
of storing the index. We limit our investigation to in-memgandexes in order to provide
a clean abstraction for our efficiency evaluation in a marsiailar to other recent em-
pirical investigations [Strohman and Croft 2007; Transiad Sanders 2008]. The next
section lays the foundation for all three of these approsidinedescribing the underlying
operations required of all set data structures.

2. SET OPERATIONS AND SET INTERSECTION

There are two broad categories of operations on sets. Quesathich return information
derived from the current state of a set are referred tquasy operations, and operations
which change the contents or state of a seupdate operations.

2.1 Dictionaries and Sets

The dynamic dictionary abstract data type assumes that two update operations &d on
guery operation must be supported:

INSERT (S, ) Return the sef U x.
DELETE(S, z) Return the sef — «.

MEMBER(S, x) ReturnTRUE, and a pointer ta: if z € .S; otherwise return
FALSE.

The simplerstatic dictionary does not require the two update operations, but does require
that a suitable initialization process be provided thaat@e a queryable structure from a
list of the set's members. Such “bulk load” processes arallysmore efficient than a
sequence offNSERT operations would be.

When the objects being stored in a static dictionary argyarg one simple representa-
tion of a static dictionary is as a sorted array of expliciues, referred to in this work as
the SAEV set representation, where “explicit” means that each atdinieger is stored in
unmodified form, independently of the others in the set. WievBER operation over a
set ofn items stored irsAEV format can be implemented ii(log n) time using binary
search.

Dictionaries are often used to build more elaborate datecstres which support com-
posite set operations that typically manipulate multigésments in a single atomic opera-
tion, and are constructed using one or more of the elemepéaibtors listed above:
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INTERSECT(S,T') ReturnthesefNT.

UNION(S,T) Return the ses U T

DIFF(S,T) Return the set — T.

EQUAL(S,T) ReturnTRUE if S = T', otherwise returmAL SE.
SPLIT(S, x) Return the two set§z | z € S andz < z} and

{z |z € Sandz > z}.
RANGE(S,z,y) Returnthesefz |z € Sandz < z < y}.

Note that theSPLIT andRANGE operations assume that the set is ordered, and that com-
parisons may be performed on the items being manipulatedn rdering requirement

is added, several more primitive operations can be coreig@rcluding a “finger search”
mechanism:

PRED(S) Return a pointer to the elementghthat immediately
precedes the current one.
Succ(S) Return a pointer to the elementghthat immediately

follows the current one.

F-SEARCH(S,z) Return a pointer to the least element S for which z > z,
wherez is greater than the value of the current element.

RANK (S, z) Return|{z | z € S andz < z}|.
SELECT(S,r) Return a pointer to theth largest element if.

In inverted index processing, tH&ITERSECT, UNION, andDIFF operations can be im-
plemented using-SEARCH, PRED, andSucc operations. The latter three operators are
state-modifying, in that they require that a “current” element have beenrdeéteed by a
previous operation, and in turn move that designator to faréifit element as a side ef-
fect of their execution. As the sequence of operations dsfdhe locus of activity shifts
through the set being processed. In some representatlase bperations can in turn
be built on top ofRANK and SELECT. For instanceSucc(S) can be implemented as
SELECT(S, 1 + RANK (S, ¢)), wherec is the current item.

2.2 Binary Intersection of Ordered Sets

The INTERSECT operation is the critical one involved in conjunctive Baatequery pro-
cessing; and also in ranked query processing when the mgikia static one, based on
fixed attributes of the page, with all presented answersiredjuo contain every query
term [Zobel and Moffat 2006]. To resolve these queries, tieichent collection is prepro-
cessed to generate a set of inverted lists, in which eachiterepresented by an ordered
set of ordinal document numbers in which that term appeaosprdcess a conjunctive
Boolean query; containing|q| terms, alq|-way intersection ofq| pre-computed sets is
then required.

The simplest case is wheg| = 2, and two sets are to be intersected; and the most
obvious approach is to spei®(|S| + |T'|) time on a standard sequential merge, picking
out the elements in common to the two sets via a loop in whighglescomparison is made
at each iteration, and depending on the outcome of the casopaaSucc operation is
applied to one or the other of the two lists. This approachésdorrect one folUNION
operations, in which the size of the output lis€¥$|S|+|T'|) and it is assumed that the two
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Algorithm 1 Binary set intersection
INPUT:  Two ordered set§ andT’, with |S| = ny and|T'| = nz, andn; < na.
OuTPUT: An ordered set of answers.
CA={)
. x < FIRST(S)
: while z is defineddo
y < F-SEARCH(T, z)
if x = ythen
APPEND(A4, z)
end if
x — Succ(S)
: end while
:return A

©o NGO R wDdR

=
o

input sets may not be destroyed during the operation, budtiefficient forINTERSECT
in the cases whejf| < |T.

Algorithm 1 describes a more complex but also more efficietgrsection algorithm, in
which each element of the smaller s8t,is tested against the larger sét, and retained
if it is present [Hwang and Lin 1972]. The search retainsestst it proceeds, with the
eliminator element,x, stepped through the elements &f and theF-SEARCH (finger
search) operation used if to leapfrog over whole subsequences, pausing only at one
corresponding value iff’ for each item inS. An auxiliary operationFIRST, is used to
establish an initial state iff; and7" is implicitly assumed to have also been initialized, so
that the first~-SEARCH starts from its least item.

The essential primitive operations in Algorithm 1 &ecc andF-SEARCH, with | S|
of each performed. In fact, tHBucc operation in set5 can be replaced by a symmetric
call to F-SEARCH(S, y) if Succ is not available as an operation, but the expected num-
ber of elements jumped is just one, and in pracScec is likely to execute faster than
F-SEARCH.

A range of ways in which--SEARCH can be implemented is discussed in the next
subsection, an8ucc can for most purposes be assumed to req@ife) time.

2.3 Algorithms for Efficient F-Search

Binary search ovet, elements requires+ |logns | comparisons, and if s&tis stored as

a sorted array of explicit values4ev format), then binary search can be used to underpin
the F-SEARCH operations required in Algorithm 1. In particular, binagasch is the
optimal approach wheff| = 1. As a slight improvement, the current elemenflircan

be used to delimit the search, to gain an incremental berrefii@second and subsequent
F-SEARCH calls.

There are also other searching methods that can be appli®seto representations,
including linear search, interpolation search, Fibonaegirch, exponential search (also
referred to agyalloping search by some authors), and Golomb search [Hwang and Lin
1972]. The desirable characteristic shared by these atiees is that the search cost
grows as a function of the distance traversed, rather thasitie of the array. For example,
linear search require9(d) time to move the finger by items; and as is described shortly,
exponential search requir€¥(log d) time [Bentley and Yao 1976]. A sequential linear
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Algorithm 2 GolombF-SEARCH
INPUT: A sorted listL of n elements, a pre-calculated Golomb paraméktar
search keyr, and a current position ih indicated bycurr.
OuTPUT: An offset in the sorted lisL if = is found, the offset of the successor of
2 if not found, orENDOFL I ST if x is greater thard.[n].
: pOS «+— curr + b
: whilepos < n and L[pos| < z do
curr <+ pos
pos «— curr + b
. end while
. if pos > n then
pos «— n
end if
offset «— BINARY-SEARCH (L[curr + 1...pos|, pos— curr, z)
. if offset = ENDOFLIST then
curr <+ pos
: else
curr « pos + offset
:end if
- if curr > n then
return ENDOFLIST
: else
return curr
:end if

©o NGO R wDdR
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merge — dismissed above as being inefficient whenr« ny — results if linear search is
used in Algorithm 1.

In situations whernl < n; < ng, use of exponential search in tReSEARCH imple-
mentation is of considerable benefit. In an exponentialcbegrobes intd” are made at
exponentially increasing rank distance from the currecéfimn, until a value greater than
the search key is encountered. A binary search is then daotiewithin the identified
subrange, with this “halving” phase having the same cost@&toubling” phase that pre-
ceded it. In this approach eaBhSEARCH call requiresl + 2|log d| comparisons, where
d is the difference between the rank of the finger’s previoustjpm and the new rank of
the finger pointer. Oven, calls for WhiChZ?:l d; < ne, the convex nature of the log
function means that at mo&t(ny + n4 log(na/n1)) comparisons are required. Note that
this approach has the same worst case asymptotic cost gshisary search when, is
O(1), and has the same worst case asymptotic cost as linear seagah./n, is O(1).

If average comparison cost is of interest, FSEARCH can make use of theterpo-
lation search mechanism [Gonnet et al. 1980]. This searching algorithexdraaverage
execution cost 00 (log log n) when the data is drawn from a uniform distribution, but in
the worst case might requirecomparisons. In practice, the running time of interpolatio
search is often worse than binary search, because each Gsompiavolves more associ-
ated computation and hence more time. However, modern ggoceare closing the gap
between interpolation and binary search, and complex lzdlons are becoming cheaper
than navigating across cache lines [Hennessy and Patt2o€&).
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Algorithm 3 Small versus small intersectiosys
INPUT:  Alist of |¢| ordered set$); ... S|,. The functionl NTERSECT is
defined in Algorithm 1.
OuTPUT: An ordered set of answers.
: without loss of generality assume that | < [Sa| < --- < [Sq]
A — Sl
: fori=2to|q| do
A « INTERSECT(A4, S;)
end for
s return A

TheF-SEARCH algorithm can also be based Golomb searching, in a mechanism de-
scribed by Hwang and Lin [1972]. Algorithm 2 shows an impleagion of this technique.
Search proceeds in a manner somewhat similar to exponer8ah RCH, but with a fixed
forwards step ob items used at each iteration. Once overshoot has been adhigbi-
nary search takes place over the (at mb#gms that have been identified. When searching
through a set of size, for the elements of a set of sizg, the correct value for the steéps
0.69(n2/n1), with a total search cost that is again proportionai@; + n4 log(nz/n1))
[Gallager and van Voorhis 1975].

Variable-length integer coding techniques &h@EARCH algorithms are duals of each
other. For example, linear search is the dual of the unarg;cbihary search the dual of
the binary code; the exponential search of Bentley and Yaa@4glLis the dual of the Elias
C, code [Elias 1975]; and the search described by Hwang andlird] is the dual of the
Golomb code [Golomb 1966]. Likewise, the search method @zRaYates [2004] is the
dual of the interpolative codes of Moffat and Stuiver [20@0]d is conceptually similar to
the divide and conquer merging techniques explored by Maffd Port [1990]. Via this
duality it is possible for any integer coding mechanism tcapelied to theF-SEARCH
task and then employed in an intersection algorithns®Bv -representations.

3. MULTI-SET INTERSECTION

When more than two sets are being intersected, the simpbpsbach is to iteratively
apply the standard two-set intersection method using aguesee of pairwise operations.
Algorithm 3 shows thismall versus small (svs) approach. The smallest set is identified,
and then that set is intersected with each of the others,cieasing order of size. The
candidate set is never larger thanwas initially, so the worst-case cost of this approach
using asAeV data representation using BRSEARCH that takegD(log d) time to process

a jump of lengthd is given by

lql
n; n

> nilog = < ma(lgl — 1) log =2,

° n ni

=2
where it is assumed that the sets are ordered by size,with ny < --- < njy. The
svs method is simple and effective, and benefits from the spkéllity inherent from
processing the sets two at a time. Even so, each diffdfeBEARCH implementation
gives rise to a differerdvs computation.

Other svs-based approaches are also possible. For example, thee dinid conquer
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binary intersection approach described by Baeza-Yate@4[2€an also be iterated in a
small-versus-small manner.

3.1 Holistic Intersection Algorithms

The alternative to thevs approach is to combine all of the sets using a single conterte
sweep through them all. The resultant holistic algorithrfisrahe possibility of being
adaptive to the particular data arrangement present, anplatantially outperform thevs
approaches. Still working with theaev representation, the simplest holistic approach
is to treat each item in the smallest set as an eliminator,seadch for it in each of the
remaining sets. Conceptually, this method is identicalrtdraéerleaved version advs.
Other adaptive approaches have been proposed which gdsirddfér in the way that the
eliminators are selected at each iteration. Barbay et @0gPprovide a detailed overview
of how such combinations interact, and summarize a rangeegfqus work.

The two prevailing eliminator selection techniques are dtiaptive algorithm of De-
maine et al. [2000], denoteatip for our purposes; and theequential algorithm &eq) of
Barbay and Kenyon [2002]. ladp, the sets are initially monotonically increasing in size.
At each iteration, the eliminator is the next remaining itteom the set with the fewest
remaining elements. If a mismatch occurs beforggélsets have been examined, the sets
are reordered based on the number of unexamined items riega@ineach set, and the
successor from the smallest remaining subset becomeshelinginator. This approach
reduces the number of item-to-item comparisons expectbd tequired, but at the possi-
bly non-trivial cost of reordering thig| lists at each iteration of the main loop.

Barbay and Kenyon [2002] proposed an alternative modiioaind suggest that every
list should be allowed to supply eliminators. Theaquential algorithm, denoted here
asseq, uses as the next eliminator the element that caused thepsesliminator to be
discarded, and continues the strict rotation among thefsetsthat point. Only when an
eliminator value is found in all the sets — and hence is patti@intersection’s output — is
a new eliminator chosen from the smallest set. This apprbashhe advantage that the
sets do not need to be reordered, while still allowing alhef $ets to provide eliminators.
However, this method suffers from a practical disadvantageeF-SEARCH operations
are likely to accrue when the eliminator is drawn from a popslset than when it is drawn
from one of the sparse sets in the intersection.

3.2 Locality-Dependent, Adaptive Intersection

Holistic methods may have a memory access pattern thatdsldeslized than davs
methods, because all of the sets are processed concurr&éathmeliorate this risk, we
propose a further alternative, described by Algorithm 4e €himinator is initially drawn
from the smallest set. When a mismatch occurs, the nextraioi is the larger of the
mismatched value and the successor from the smallest seteg$3ing starts s if the
eliminator is again taken frorfi;, otherwise processing begins$h. The intuition behind
this approach is two-fold. The first is that, while it is trdeat in the absence of other
information, the best eliminator will arise in the smallsst, the likelihood of another set
becoming significantly smaller tha#y during processing is small. The second intuition is
that, having discovered a bigger than anticipated jump aafrthe sets, that value should
naturally be tested against the first set, to see if addititeras can be discarded.
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Algorithm 4 Max successor intersectiomax
INPUT:  Alist of |¢| ordered set$ ... S
OuTPUT: An ordered set of answers.

1: without loss of generality assume thag| < [Sa| < --- <[5y
22 A—{}

3. z «— FIRST(SY)

4: startat «— 2

5: while z is defineddo

6: for i = startat to |¢| do
7: y <« F-SEARCH(S;, x)
8: if y > xthen

9: x «— Succ(Sy)
10: if y > x then

11: startat «— 1

12: T —y

13 else

14: Startat «— 2

15: end if

16: break

17: elseif i = |¢| then
18: APPEND(A, )
19: x «— Succ(Sy)
20: Startat «— 2

21 end if

22:  end for

23: end while

24: return A

3.3 Multi-Set Intersection in Practice

In this section we empirically compare the intersectionhmds described in the previous
sections, still working exclusively in the framework edisitred by thesAev representa-
tion. First, we describe the origins of the data used, angidenthe statistical properties
of two large query sets which form the basis of the empiritadyg We then compare and
contrast the varioueNTERSECT andF-SEARCH combinations, setting the scene for the
introduction of other representations in the Sections 45and

Our experiments are based on the integer lists that comiréseverted index of the
GoV2 collection of theTREC Terabyte Track, sebttp://trec. ni st. gov. The to-
tal collection contains just ove¥s million crawled web documents, rough®f million
distinct alphabetic “words”, and occupié¢®6 GB of space. The vocabulary and inverted
lists were constructed using thet t ai r search engine, ség t p: / / www. seg. rnit.
edu. au/ zet t ai r . Words that appeared with frequency one or two were assuonag t
handled outside of the set of inverted lists, for examplé&iwithe vocabulary. After this re-
duction, a total 019,783,975 index lists remained, each of which was then storeshinv
format as an ordered sequence of document numbers in theraog = 25,205,181.

Two query sets were used for the experiments. The first qunyas extracted from a
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Table I. The27,004 Microsoft queries and31,433 TREC queries. The average query length for
the Microsoft andrrREcC queries is2.73 and4.00 terms respectively. The “averagg” columns
show the average number of integers per index list acrossraiks for queries of that length.

Query length Microsoft queries TRECqueries

Total Matches  Average; Total Matches  Average;
lq] queries ('000) ('000) queries ('000) ('000)
2 15,517 124 1,018 28,174 34 560
3 7,014 78 2,433 33,505 21 1,603
4 2,678 56 3,712 28,937 14 2,670
5 1,002 41 4,712 18,864 9 3,445
6 384 27 5,169 10,317 7 4,093
7 169 15 5,746 5,252 6 4,607
8 94 10 6,050 2,772 5 4,999
9+ 146 5 5,985 3,612 3 5,502

query log supplied by Microsoft, with the property that gvquery had a top-three result
in the. gov domain at the time it was originally executed. The secondyjset was
extracted from the 2005 and 200&ec “million-query” track. All single word queries
from each set were eliminated, and the remaining queriesddtto ensure that each had
at least one conjunctive match in teev2 collection. There were a total 87,004 unique
gueries retained in the Microsoft query set, all of lengtb twgreater; and31,433 queries
retained in therREC query set. Table | shows the distribution of query lengththetwo
test sequences; the average number of document matchescfogeery length; and the
average number of documents containing each query termputeieh for each query as
(ZL‘”l n;)/|q]. Compared to the Microsoft queries of the same lengthytteec queries

tend on average to involve terms that are less frequent icdhection, and thus more
selective in terms of answer numbers. Across both logsptingdr queries tend to involve,
on average, terms that are more frequent in the collectistreven relatively short queries
of three words involved computing intersections over miil of document numbers.

In order to focus solely on the efficiency of the intersectidgorithms being tested, the
inverted lists for the terms pertinent to each query werd eto memory. The execution
clock was started, and that query executed five consecitiestin each case returning the
full candidate set of document numbers. The clock was thapstd again, and theru
time for the run was added to a running total, according téethgth of the query evaluated.
For example, the time recorded for queries of length two driram the Microsoft query
set is the average 6fx 15,517 = 77,585 query executions.

Figure 1 compares the averageutime per query for each intersection method. The top
pair of graphs show the baseline approach of combining pisearch with the different
INTERSECT methods. The second row of graphs similarly shows the pedace of the
same methods when Golonks SEARCH is used; the third row, the performance of an
exponentiaF-SEARCH; and the final pair of graphs the performance offaSEARCH
based on interpolation search. In each of the four pairsagltus, the left-hand one shows
the measured behavior using the Microsoft query log, andigig-hand one shows the
measured behavior using tleec query log.

Binary search (in the top pair of graphs) is relatively ireét, as it generates more
cache misses than the other methods. The result is a ndggeatiormance degradation
relative to methods which achieve localized access. At tito of the figure, interpo-
lation search performs significantly fewer comparisons\v@rage across alNTERSECT
methods (see Barbay et al. [2006]) and has a lower averagédoasd, but the added cost
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Fig. 1. Execution time required (ioPumilliseconds) of intersection algorithms as a function oéry length, for
two different query logs processed againstthReC GOV2 dataset, and assumingaeV set representation. All
experiments were carried out ore& Ghz Intel Xeon with2 GB of RAM. Note the logarithmic vertical scale.
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Table Il.  Time required (icPumilliseconds) for thesvs intersection algorithms (which was the
most efficient in all cases) as a function of query lengthfBEARCH algorithm, for two different
query logs processed against tieeC GOV2 dataset, and assumingaEV set representation. All
experiments were carried out or2a&8 Ghz Intel Xeon with2 GB of RAM.

Query length Microsoft queries TRECqueries
lq] Bin Inter Exp Gol Bin Inter Exp Gol
2 80 34 26 28 28 11 9 10
3 116 48 39 40 49 18 16 17
4 144 58 50 50 61 22 19 21
5 159 64 57 57 64 22 21 22
6 138 57 52 53 67 23 22 24
7 118 50 47 48 72 24 24 26
8 88 38 3 38 72 23 24 26
9+ 68 29 30 30 65 22 24 25

of the arithmetic involved in calculating each probe me&asit is no faster that the other
searching approaches. In termsaru performance, thavs and max methods outper-
form theadp andseq multi-set approaches, as a consequence of a more tightidzed
memory access pattern.

One issue that arose with the Golomb-baBeSEARCH approach depicted in the third
row of graphs is the choice of parameberin the svs implementation, the value éfap-
propriate to each list is chosen immediately prior to thetthieing included in the ongoing
sequence of intersections. But with te), adp, andmax approaches, a value bfs com-
puted for each list at the commencement of processing, lmasttk length of the shortest
list. That same set dfvalues is then used throughout the computation, which mibang
the intersection yields only a few answers, then the seagghiocedure may ugevalues
that are too low.

The best overall choices across the different eliminatiecsien approaches are thes
and max mechanisms, coupled with the exponential search or Golaalch for short
gueries, or coupled with the interpolative search for longss When conjunctive queries
are computed using these combinations, the execution tifni® svs andmax methods
tend not to grow as more terms are added to the query. Thisauke the cost is largely
determined by the product of the frequency of the rarest efepand the number of terms.
The longer the query, the more likely it is to include at lezrst low-frequency term, with
the sum of the marginal savings that accrue on each one ofrtaeylintersections more
than recouping the cost of processing a greater numbetsf lis

Finally, note that the top two graphs also show the binargcbebased method of Baeza-
Yates [2004], which is adaptive by virtue of the search sageelt operates on two sets at
a time, but within those two sets has little locality of refiece when compared to tkes
andmax approaches, and is a little slower in practice.

Table Il shows the average time in milliseconds for eacheftlurF-SEARCH methods
when combined with thevs approach, since it always the most efficient in practice. The
exponential searchEkp) and Golomb searchGpl) exhibit nearly identical performance
across all values df|, but with Exp having a slight edge throughout the range. This su-
periority could arise if the eventual answers to each quexynat uniformly spread across
the document range, and instead tend to form clusters witl@rdocument space. Inter-
polation searchifter) is also fast whety| is large, when the last intersections performed
involve a very small set. Binary searchirf) is never the fastest when combined with
the svs intersection method. These observations also hold truenilineseF-SEARCH
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Table Ill.  The average number Bf SEARCH calls initiated for therRECquery set. The
average length of the shortest list,, is also shown.
Query length n1 svs adp bya seq max
2 118,138 118,138 118,134 118,139  156,40907,191
3 150,801 183,918 183,086 183,921 273,40162,636
4 161,965 210,971 209,593 210,975 358,89184,154
5 156,616 210,167 208,721 210,172 404,95381,733
6 156,455 213,907 212,114 213,913 454,43483,682
7 154,810 216,606 214,231 216,613 511,18186,833
8 144,740 206,936 205,322 206,943 523,29478,123

©
+

127,778 185,787 184,036 185,797 549,89860,495

approaches are coupled with other algorithms, includistgandadp.

Another way of quantifying efficiency is to count the numb&FeSEARCH calls initi-
ated. Table Ill shows the average numbeFeSEARCH calls required across thHg1,433
TRECqueries, categorized by query length. The number of calisgolve any given query
is largely a function of the query length and the number ahtein the shortest list. How-
ever, as queries get longer, on average the rarest querybecomes progressively less
frequent, and extended queries can involve fel«SEARCH calls than shorter ones, pro-
vided that an appropriate choice of eliminator is made ah step. In this regard, method
seq is clearly more expensive than the others, and themawmethod a little better.

From these experiments we conclude that when the sets itiquespresent term occur-
rences in documents in a large collection of web pages, anstared irsAEV representa-
tion, the classic small-versus-small approach to inteiseds the fastest. In combination,
the non-parameterized exponenfalSEARCH implementation is the approach that is the
most versatile across the broad spectrum of query lengths.

4. COMPRESSED SET REPRESENTATIONS

The intersection methods discussed so far assume eachstetad inSAEv format as

a sorted array of explicit values. This is, however, an egpenway to store the sets
that arise from the inverted lists in information retrieggstems, and any claims about
relative performance must be re-evaluated when more camsfmaage representations are
employed.

4.1 Compact Sequences of Relative Differences

The index lists in a retrieval system are commonly storedsés of first-order differences,
or gaps, between consecutive items [Zobel and Moffat 2006]. Withis broad framework
there are then many possible ways of representing the eiféers, and we will refer to
these generically as beimgmpact sequence of relative differences, or CSRD approaches,
and take as axiomatic that the items in the sequence areaiimiggers and sorted, and thus
that the differences are all strictly positive. For examplben converted to differences,
the sorted set

S ={1,4,5,6,8,12,15,16, 18, 20, 25, 26, 27, 28,30} ,
is transformed to
{17 3) 17 1) 274) 37 1) 27 2) 5) 1) 17 17 2} b

which is then stored using some form of variable-length dbdefavors small values over
large.
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As a combinatorial limit, a set of distinct items drawn from the univerge. .« can be
represented in as few as

[logQ <Z>] — log (u_#;)'n' ~n (1og% + 1.44) , 1)

bits (see Brodnik and Munro [1999] or Sadakane and GrosSigpfor discussion). Look-
ing at this bound from the point of view of a sequence gfaps(d; | 1 < i < n), any cod-

ing mechanism that represents the sequene@(inlog(u/n)) bits, whereu = >, d;,

is acompact representation, and is at most a constant factor inefficientpared to the
combinatorial lower bound. In particular, any static irdegode with the property that the
codeword for integer: requiresO(log z) bits can be used. Codes that meet this require-
mentinclude the Elias andj codes [Elias 1975]; and static byte-codes. Golomb codes are
explicitly fitted to the situation described, and if alsubsets of . .. « are equally likely,
provide a one-parameter equivalent of the multi-paranmdtéfman code that would be
derived from the probability distribution governing thegaps. Witten et al. [1999] and
Moffat and Turpin [2002] describe all of these methods, ardrefer the reader to those
descriptions rather than repeat them here.

Unfortunately, thecSRD representations have a serious drawback: the differeraeidg
compression transformations both produce represengatitat must necessarily be ac-
cessed sequentially. This restriction means that primi®t operations other th&ucc
are expensive. In particular, the only viatlleSEARCH alternative is essentially a linear
search, which means thetiTERSECT of lists of lengthn, andn, requiresO(n; + n2)
time. EverM EMBER queries incur a(n) cost when using simplé-gap representations.
That is, compact set representations are space effectivankess they are enhanced with
auxiliary structures, are not efficient for set intersattigpplications such as text retrieval.
Recent work orsuccinct set representations which use sophisticated bitvectoesepta-
tions provide a viable alternative to balancing efficienoy affectiveness, but it is unclear
how such data structures can be effectively integratedirentinverted index-based sys-
tems [Okanohara and Sadakane 2007; Claude and Navarro. 2008]

4.2 Bitvectors

A set S of integer values over a known universe. .« can also be represented using a
bitvector, in an approach we refer to asrv. A bitvector is au-bit sequence in which
thexz th bitis 1 if and only if x € S. For example, assuming that= 32, the setS in
Section 4.1 would be represented as the bitve6t 1101000100110101000011110100.
If the set being represented is dense over the univierseu, that is,u/n = O(1), then
bitvectors are both space-effective and also accessegfticiOn the other hand, when
n < u, bitvectors are more expensive than the compact repreégergalescribed in the
previous subsection. Using a bitvector dramatically shifie cost balance of several of
the primitive set operations. OperatioineSERT, DELETE, andM EMBER all takeO(1)
time in theBI TV representation; budNION, DIFF, andINTERSECT takeO(u) time, and
without additional support via auxiliary structurds; SEARCH, Succ, and PRED also
become more expensive. In practitéNiON, DIFF, andINTERSECT can benefit from
bit-parallelismto obtain a constant factor speedup, but this does not d@ffe@symptotic
cost of the operations.

Control operations such &ANK andSELECT are also expensive in unadorned bitvec-
tor representations. If the application requires thesetlerocontrol operations such as
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Table IV. Effectiveness of storage, and efficiency of accémsthree different representations
of integer sets, with emphasis on the operations neededtimetigieval systems, assuming that a
subset ofz (and a second larger one of size, where the operation has two parameters) items in
the rangel . . . u is being manipulated. In the-SEARCH operationd is the number of items that
are stepped over. In the case of theVv approach and thE-SEARCH operation it is assumed that
then elements form a random subsetlaf. . u.

Attribute SAEV CSRD BITV
Space required (bits) nlogu n(log(u/n) + 1.44) u

M EMBER (time) O(logn) O(n) O(1)
F-SEARCH (time) O(logd) O(d) O(u/n)
INTERSECT (time) O(nlog(na/n)) O(n + n2) O(u)

Table V. Total space cost (gigabytes) to store three diftesabsets of the inverted lists of
terms appearing in more than two documents int2@GB TREC GOV2 collection.

Data Representation TREC GOV2 Microsoft queries  TRECqueries
19,783,975 words 15,208 words 44,862 words
BITV 58,051.4 44.6 131.6
SAEV, 32-bit integers 22.6 14.1 17.1
CSRD, byte codes 7.4 3.8 4.8
Combinatorial limit 5.9 2.7 3.5

F-SEARCH, PRED, or Succ, the basic bitvector representation is no longer sufficigat
cobson [1989] showed that the addition of a controlled arhotxextra space allowRANK
andSELECT to be supported i¥(log u) time. As a consequenc8ycc, andPRED can
also be supported in equivalent time. Building on that wiMlanro [1996] demonstrated
thatRANK andSELECT can be accomplished ifi(1) time. The new structure, called an
“indexable” bitvector, depends on the use of auxiliary lopkables which store cumula-
tive ranks for blocks of elements. The tradeoff for the perfance boost is an additional
o(u) bits of space, required to store the lookup tables.

Additional variations on bitvectors have been reporte@mndly, including some which
attempt to reduce the space overhead associated with dptusetors (see for example,
Clark [1996], Pagh [2001], Raman et al. [2002], Okanohamh &adakane [2007], and
Claude and Navarro [2008]). However, the space overheastitidre significant in certain
set arrangements. Note that the crucial motivation for mafnghe alternative bitvector
arrangements is support for efficidRANK andSELECT operations, neither of which are
strictly necessary for set intersection.

Table IV summarizes the three alternative set representathat have been discussed.
In each case it is assumed that a subsetitdms in the rangé . . . v is being manipulated,
and that the=-SEARCH operation steps pagtmembers of the set. The column headed
BITV further assumes that the set is dense. In the case afdkp andBITV represen-
tations, it is also assumed that no auxiliary informatiobeing stored. (But note that in
both case$-SEARCH operations can be faster when the base arrangement is atgginen
by auxiliary index structures.)

4.3 Space Usage in Practice

Table V shows the cost of storing three different subseth®frtverted lists of the&ov2
collection. In the second column, every term that appeansdre than two of the collec-
tion’s documents has its list included in the sum, and theastepresent the cost of storing
a full index. The third and fourth columns then show the cdstoring inverted lists for
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only the subsets of the terms required by the two query sdisated by the column head-
ing. For example, storing the full set of inverted listssimev format using32-bit integers
gives rise to an index of nearB3 GB. When compared with the combinatorial cost of the
full index (as defined in Equation 1, summed over all the )isfs6 GB, the advantage
of storing the index incsrD format is apparent. Byte codes coupled witbRD format
do not attain the combinatorial bound, nevertheless theyige attractive space savings
compared to uncompressed integers amdv format. At the other end of the spectrum,
storing the full index inBITv format is prohibitively expensive; and even if only the re-
quired query terms are considered, thev format — which is the most efficient in terms
of MEMBER queries — is relatively costly, even if those terms could sbow have been
known in advance.

5. BALANCING SPACE AND TIME USAGE

For CSRD representations it is possible to accelefat8EARCH operations by adding ad-
ditional information to the compressed sequence. For elgrvoffat and Zobel [1996]
add asynchronization point every+/n th position, so that blocks af/n items can be by-
passed wheM EMBER andF-SEARCH operations involve search keys not present in that
block. More elaborate approaches have also been proposet attempt to offset the
costs of a linear scan through dHgaps using variations on balanced binary search trees.
Gupta et al. [2006] describe a two-level data structure wigarch level is itself search-
able and compressed, extending earlier work by BlandfoddBlrlloch [2004]. In the
Gupta et al. [2006] method, each block of elements at therldevel is represented as a
balanced binary search tree, and stored implicitly via aquder traversal, with additional
skip pointers embedded to find each child’s left subtredingibn top of each tree block is
an index which allows the correct tree to be quickly identifiBy balancing the size and
efficiency of the two structures, good asymptotic perforogas achieved.

5.1 Auxiliary Indexing

In this section we propose a more pragmatic approach to ssldhe same need. The
structure, which we refer to as auxiliary index, balances space and time usage in a
relatively straightforward manner, and allows fast impégrtation. It makes use of a partial
index of uncompressed items together with offsets into trepressed sequence.

Figure 2 outlines the proposed arrangement. First, evénelement is extracted from
the compressed list, added to an auxiliary array, and st@asegh uncompressed integer.
The choice of a value fagr is discussed shortly. Next, the remaining items are reptede
asd-gaps, and stored as groupspof- 1 differences, compressed sequentially. Finally, a
bit offset (or byte offset, in the case of byte-code compogstechniques) is added to the
auxiliary array, so that the blocks of the compressed datdeaccessed independently of
each other.

When aM EMBER operation is required, the keys in the auxiliary array aadrsed
using anysAev-based searching method, including teSEARCH approaches described
in Section 2. If the value being sought is located in the darxilarray, it is returned. If
not, a sequential search is undertaken in the appropriet& of p elements using asrD
mechanism. Alternatively, the block can be completely degeessed into an array, and
searched using saEv-basedVl EMBER operation.

The cost of searching when the set containvglues is at mosP (log(n/p)) for a binary
search in the auxiliary index, followed [(p)-time spent decoding and searching within
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Fig. 2. Auxiliary indexing. In this examplg = 4, so every fourth element from the original list (part(a)adéd
entries) is extracted and stored in the auxiliary arrayt((@), together with a byte offset to the block pf- 1
remaining elements. The block elements are then encodédjags and compressed (part (c)).

the block. Ifp = klogn, for some constant, the combined search cost for the two
phases i®)(logn). In terms of space, and assuming an efficient code, the casbohg
each difference i$og(u/n) + 1.44 bits in an amortized sense. There gpe— 1) items
in eachp item block stored in this way, ofp — 1)n/p items in total. The othen/p
elements are stored in the auxiliary array, and reqlsige: bits for each stored element,
pluslog(nlog(u/n)) < log n+loglog u bits for the access pointer. Over both components
the cost is bounded by
p;ln <1og L 1.44) + 2 (log u + logn + loglog u)

p n p
bits, which is readily reformulated as

n <log% + 1.44) + % (2logn + loglogu — 1.44) .

Then, wherp = k log n, this simplifies to

log 1 1.44
n(log ™ +1.44) + 7 (24 2888 22 )
n k logn logn

which is less than

log 1
n(log3+1.44)+E 9 28081
n k logn

That is, for an additiona®(n/k) bits compared to Equation 1, the search time in the
compact representation reduces2¢k log n), provided that. > logu. In real terms, if

k =1 andu < 2%, the additional cost of the auxiliary index is less ti3dnits per pointer
whenn > 64, and less thaf.5 bits per pointer when > 4096.
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Table VI. Total space cost (gigabytes)@$RD representation and auxiliary indexing, on the same bass as
presented in Table V.

Data Representation TREC GOV2 Microsoft queries  TRECqueries
P 19,783,975 words 15,208 words 44,862 words
CSRD, byte codes 7.4 3.8 4.8
CSRD, byte codes, auxiliary indeX = 4 8.0 4.1 5.1
CSRD, byte codes, auxiliary indeX = 2 8.5 4.4 5.5
CSRD, byte codes, auxiliary indeX, = 1 9.5 4.9 6.2
1000 1000
g A svs+bc
%] [%2]
£ 100 £ 100 . svs+bc+aux
o o —--=-Dbvc
S E --=- svs
= [
10 10
T T T T T T T T
2 3 4 5 6 7 8 9
Query length (words) Query length (words)
Microsoft Queries TREC queries

Fig. 3. Performance of set intersection algorithms foredéht query lengths against theec GoV2 dataset,
measured using 28 Ghz Intel Xeon with2 GB of RAM. In each of the two graphs twosrD-based methods
are shownsvs+bc, the sequential processing of byte-codes; ausdbc+aux, byte-codes indexed by an auxiliary
array withk = 2. Each graph also includes osaEv-based methodsvs, a small-versus-small approach using
exponential search; and use of a pure bitvector apprdaech, The vertical scale is the same as was used in
Figure 1, and the results here can be directly compared stghimtwo columns of graphs in Figure 1.

A potential disadvantage of the new approach is FR&8EARCH operations over a dis-
tance ofd are no longer guaranteed to takklog d) time. In the worst case, sequential
decoding of a block ofl-gaps can lead t@(logn) time instead. However, this is gen-
erally not a significant problem, as the block-based apprémuevell suited to blockwise
hierarchical memory models. When compared with the inlpier@ach described by Mof-
fat and Zobel [1996], our blocks are smaller on average, badkip pointers are main-
tained separately from the compresgeghp sequence. The revised approach allows faster
F-SEARCH operations, and thus fasteRKTERSECT computations, but at the cost of a
small amount of additional space. In recent independerk ®anders and Transier [2007]
also investigate two-level representations to improversgction in compact sets. The key
difference between their work and ours is that they use aomihtion technique to en-
sure that each bucket on average has ardogd items, and get the benefit of a simpler
auxiliary structure that can be implemented as a look-uletathereas we count an exact
number of elements into each bucket, and hence need to se#ihah the auxiliary table
to identify the correct block.

5.2 Auxiliary Indexes in Practice

Table VI shows the total space usage to store thedal2 index and two index subsets
used in the experiments msrD format, without the auxiliary index (this row is repeated
from Table V), and with an auxiliary index, using three diffet values ofc. The aug-
mented indexes all use more space than the fully byte-casiedas expected, but even
with & = 1 the additional cost is relatively modest.

Figure 3 compares thEV binary representation and the alternathsRrD representa-
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tion. Fully compressed representations such aswuebc approach perform well for short
gueries, but are much slower than #reeVv-basedsvs approach on longer ones, in which
it is more likely that at least some common terms will arisse df the auxiliary array in
the svs+bc+aux method increases processing speed on long queries, amd afitersec-
tions to be handled in times closer to those attained by tlterapressedvs approach.
This improvement is a result of intersection benefiting fromm-sequential access and, as
gueries get longer, the increasing sparsity of the mostidigitating term list.

Figure 3 also shows the time taken by the bitvector appraach,which is usefully
fast on short queries, but as expected, has a cost that gppesxdmately linearly in the
number of query terms. Bitvectors are able to store commenygerms in relatively small
amounts of space. Indeed, their only real deficiency is tloeldtant storage costs for rare
terms, an observation that leads directly to the hybrid @g@gin that is explored in the next
section.

5.3 Hybrid Representations

The simplicity of bitvectors, and their useful blend of efficcy and effectiveness for
INTERSECT and MEMBER queries on dense sets, suggests that using them to store at
least some of the term lists of the index may be beneficialhigoend, we now consider a
hybrid approach, in which the dense lists in the index, poading to frequently occur-
ring terms, are stored usinggaTVv representation, and the sparse terms are stored using a
CSRD representation. Given that each byte-coded differencepies a minimum of eight
bits, using a bitvector for all terms that occur in more thg#s of the documents in a col-
lection containing a total of documents cannot increase the index size. Other thresholds
are also possible, and in the experiments described shibvélypitvector representation is
used whenever more than'k of the documents contain that term, for valueg:ah the
set{8, 16, 32}.

Two alternative ways of using the resultant hybrid indexehbeen evaluated. In the
first method, denotetlyb+m1, the sets of byte coded and bitvector lists are intersected
separately, and then combined using a sequen€ bf-time M EMBER operations. That
is, if there are angI TV terms, they are intersected using bitwiged operations to yield
a bitvectorB. If there are no byte-codetisRD sets, then the expanded set of document
numbers derived fron® is returned. Or, if there are byte-coded sets, they aresetted
using thesvs approach to yield a candidate gt Then, if there are no bitvector sets,is
returned. Otherwise, for eache C, if Blz] = 1, thenz is appended to the answer set.

In the second hybrid methotlyb+m2, all byte-coded lists are intersected to produce a
candidate list. Then, each of the remaining bitvector Isss®arched via & EMBER query,
replacing the bitvectofrNTERSECT operations with multipleM EMBER operations, each
of which takesO(1) time. The motivation for this alternative comes from thelizegion
that intersection of the byte-coded sets should result paasg set of potential candidates,
and that a sequence BfEM BER queries may be preferable to affu)-time INTERSECT
operations. Algorithm 5 describes this second approacktaild

5.4 Hybrid Representations in Practice

Table VII shows the cost of storing tleov2 index data using compressed lists and bitvec-
tors in a hybrid approach. The most effective partitionirgnp for the compact hybrid
representation i = 8, with terms occurring in fewer tham/8 = 3,150,648 documents
stored using &sSRD approach and the byte-code representation. Note that whers
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Algorithm 5 Hybrid intersection method twyb+m?2
INPUT: A list of csrRD-representation byte coded term li&SRD; ... CSRD,,
and a list ofsI Tv-representation term list8I TV, ... BITV,, where
z+y=lql.

OuTPUT: An ordered set of answers, 33-bit integers.
CA-{)
if x = 0then

B — BITV,

fori — 2toydo

B + B bhit-and BITV;

end for

return DECODE-BITV(B)
end if
: C' «— DECODE-CSRD(CSRD;)
:fori«— 2toxdo
C «— INTERSECT(C, DECODE-CSRD(CSRD;))
. end for
:fori<— 1toydo
for eachd € C do

if NoT MEMBER(BITV,, d) then

DELETE(C, d)

end if
end for
: end for
s return C

©e OO R WDNR

e el e o o
© © X N U A WDNRO

Table VII. Total space cost (gigabytes) of hybadrv/CSRD representations, on the same basis as is pre-
sented in Table V and Table VI.

Data Representation TREC GOV2 Microsoft queries  TRECqueries
19,783,975 words 15,208 words 44,862 words

Hybrid bitvector and byte codé, = 32 8.9 4.9 6.2

Hybrid bitvector and byte codé, = 16 7.3 3.7 4.7

Hybrid bitvector and byte codé, = 8 6.9 3.4 4.3

there is a net saving compared to the fully byte-coded indiaklé V), because even in the
dense term lists, there are sonigaps that require more than one byte to code. Even with
k = 16 the overall index is smaller than the byte-coded one, anddnee relationship
holds for the subsets of the term lists that appear in the gpe@mental query streams.
Table VIII shows the fraction of theov2 collection’s index lists that are handled as
bitvectors, for three different threshold valules As a fraction of the vocabulary of the
collection, the terms that are sufficiently frequent to \&atrbitvector index lists are a tiny
minority, even wherk = 32. But when the two query logs are evaluated, a much greater
fraction of bitvector terms arises, because queries tehtbnase the rare terms. The top
pane of Figure 4 lists th&88 most frequent terms in theov2 collection, each of which
appears in more than one eighth of the web documents in thectioh, so is stored as
a bitvector in the hybriai Tv/csrRD method wherk > 8. The bottom pane then shows
a sequence of ten consecutive queries extracted fromrEe query log, with each of
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Table VIII. Fraction of index lists stored and processed iagebtors for three different threshold values
k, and two different query streams. Jus8 index lists are stored iBITv format whenk = 8 (listed in
Figure 4); even so, one or more of those terms appea§%t of the Microsoft queries, and 0% of the
TRECqueries.

Hybrid parameter

Attribute =8 k=16 LE=32
Fraction of index lists stored il Tv format 0.001% 0.003%  0.007%
Fraction of Microsoft queries with org TV index list 24.6% 31.0% 34.6%
Fraction of Microsoft queries with multiplei Tv index lists 10.7% 21.0% 33.5%
Fraction ofTREC queries with onaI TV index list 28.6% 29.2% 26.8%
Fraction ofTREC queries with multiplesi Tv index lists 21.9% 33.7% 47.9%

of to the and for a in on by this is information with home fronpatare as not all 1 be us other state
search last contact new an page 2 that about national dalia may have site if 3 department use you
no 2003 available more 4 5 services has privacy center wesburces your will it 10 name service
number was system help date library can please only alsocéaéfsearch 6 one been i these 8
program 2000 15 health related its 12 management througbusdieks 30 federal states s do report
development any index washington support following wharykean type 25 when general programs
20 2001 subject first description using where administnatiot used 2002 their comments modified
11 email policy 23 web 9 questions there time 19 governmedéaiga security each map title 16 order
make back code find part united law within such accessibilityent 14 advanced does 13 both two
our how areas years over d they local were ¢ 22 next countydesl include 31 disclaimer under
agency area into based click need

weather iff london how to® find® out® your® body?? mas indef
red®? dead revolver cheats grand theft auto®aandreas cheat codes
vacuum tube pins heaven dj sammy &ydnou

wings of desire escort ny vegetable dise¥seontrol'® sprays
pinnacle village bike rentals 8rthe® carolina islands

Fig. 4. Thel88 most frequent words in theov2 collection, in decreasing order of the number of documents
containing them, each of which appears in more than oneteaftthe approximatel5 million web documents
(top pane); plus a sequence of ten queries extracted fromribe query set, annotated to show which words are
represented as bitvectors for the three different valudstbét were tested.

the common terms annotated to show the valuk @df 8, 16, and32) at which that term
toggles fromcsrD format toBITV format in the hybrid arrangement. For example, the
query term “control” is stored ikSRD format using byte-codes wheén= 8, but is stored
as a bitvector whehk = 16 andk = 32.

Table IX shows the average cost of processing the set intéyas arising from theREC
guery stream using the/b+m1 andhyb+m2 methods, broken down by query length, and
with techniques built on theaev, CSRD, andBITV representations also included. Three
different threshold pointé = {8,16, 32} are shown. Thevs approach, using 8AEV
data representation, is efficient at all query lengths, aodiges a competitive benchmark.
Even with the auxiliary index, thesrRD data representation is not competitive in terms of
guery speed, and nor is the puerv representation. In the latter case, long queries are
especially expensive, because of the large amount of inaiextdat must be processed via
binary AND operations.

The hyb+m2 mechanism shown in Algorithm 5 is markedly superior to Hyg+m1
approach, with the difference between the two being theiedition of the binaryaND
operations. Even when the index size is minimize at 8, queries are resolved in times
similar to thesvs+bc+aux approach; and when a larger index is permitted using 32,
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Table IX. Time required (ircPU milliseconds) to compute set intersections for tik&EC query set against
the cov2 index using &2.8 Ghz Intel Xeon with2 GB of RAM, using different set representations, and
different intersection techniques. Thes+bc+aux method used a parameter valke= 4. When random
access operations are available, even long queries carobesged quickly. These times may be directly
compared against those shown in the right-hand half of Tiable

svs+hc hyb+m1 hyb+m2
lal VS ax O F=8 k=16 k=32 k=8 k=16 k=32
2 9 15 18 10 8 6 10 7 6
3 16 27 24 19 14 12 19 13 9
4 19 36 29 28 22 19 26 17 11
5 21 38 35 36 29 26 31 20 13
6 22 41 43 45 36 33 36 22 14
7 24 45 52 55 44 39 41 24 15
8 24 46 61 62 50 45 44 25 15
9+ 24 44 110 84 65 61 55 28 17
128 1 128+ = svs+hc
fay + fa
& o svs+bc m - & ol
R R
§ k=8 # svs+bc+aux § k=1
é 32 - s ®m Svs é 32 k=8 -{' svs+bc+aux
jé \ move jé k=8 bvc
§ 16 - k=32 hyb+m2 %E; 16 | m svs
© © k=32 W hyb+m2
8- T T T T T T 8- T T T T T T
2 4 8 16 32 64 2 4 8 16 32 64
Data used (MB/query) Data used (MB/query)
Microsoft Queries TREC Oueries

Fig. 5. Tradeoffs between index cost and query throughpith thie average time taken over all queries, in
milliseconds per query, plotted as a function of the aveeageunt of index data processed in MB per query, for
two different query sequences.

the execution times fall below the benchmark provided bypilnesvs approach.

5.5 Bringing It All Together

Figure 5 summarizes the various measurements that haveertbfiom our experiments.
The axes of the two graphs represent the primary resourcesiowed during querying
in a text retrieval system — the average amount of data gamsf from secondary stor-
age into memory in order for a query to be resolved (or from wgninto cache, in a
memory-resident system); and the average time taken per-query to process that data
and determine the conjunction of the query terms. In eacheofwo graphs the average is
computed over the full set of queriexr, 004 Microsoft queries in the left-hand graph, and
131,433 TREC queries in the right-hand one. The layout of the graphs méetsnethods
in the top-right corners involve both high data volumes anjlquery-processing times,
and are relatively uninteresting. On the other hand, metladohg the lower-left frontier
define a range of interesting options.

The “pure” csrRD bhyte-coded index, denotes¥s+bc is the slowest of the methods
shown. It is not competitive with alternatives that providst MEMBER queries, and
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the simple tactic of adding an auxiliary index (the connégieints labeledvs+bc+aux)
reduces execution time by a factor of as much as four. Thegiuare approach (the point
labeledovc in each graph) is also relatively fast, and requires surngfy little data trans-
fer — the many low-frequency terms that cause the extremiaggocost of the bitvector
index (Table V) are not ones that occur in typical queriest e terms that do occur in
typical queries are relatively efficient when stored asdaiters. For the same reason, the
bvc approach also requires less data to be transferred forgevgreeries than does the pure
SAEV approach, labelesks in the graphs, while operating at comparable speed.

The clearly best method amongst those illustrated in Fi§useheBi Tv/cSRD hybrid
method described in Section 5.3. It outperforms the othg@lémentations in terms of
both speed and data traffic — being faster tharsttev-basedsvs method; and requiring
less data to be transferred per query than the pgrp-mode byte-coded index. It also
offers a clear tradeoff between query speed and data trectse Withk = 32 the stored
index is a little larger and per-query data costs are a hitier than withk = 8, but query
throughput approximately doubles.

6. CONCLUSIONS

Three distinct representations for sets and for compuggnsersections have been ex-
amined, and experiments carried out to quantify the usefigrof each. The particular
application considered is that of finding the conjunctioracdet of query terms, where
the sets being intersected represent the identifiers of \agle9in a crawl! of the gov
domain, and the conjunction of the terms identifies the wejepdhat contain all of the
guery terms. The query streams used are both drawn from veethsengine logs.

The key findings from this work are that:

—Storing the sets as sorted arrays of explicit valsag{ format) allows fast intersections
to be computed, with the cost determined more by the frequefitbe rarest term in the
query than by another other factors, including the numbeerfis in the query. Of the
various algorithms for working witlSAEV representations, the traditiorsds method
provides fast execution, but the nemax method described in this paper is almost as
fast, and requires fewét-SEARCH calls.

—But, as is already well known, the total storage requirenfiensaev-format index
information is high.

—Storing the sets as compact sequences of relative diffesgbsrD format) is much less
costly in terms of storage space, but makésMBER operations more expensive, and
hence intersection operations slower. Even when an anxitidex of the type described
in this work is added, querying time remains slower than withsaev format andsvs
approach.

—Storing the sets as bitvectors (pwserv format) is expensive in terms of total index
storage space, but for typical query sequences allows daspatation of intersection,
with data transfer requirements that are not dissimilahtisé associated withsrRD
format representations.

—A hybrid index arrangement combinimgTv representation for a minority of very com-
mon terms, anatSRD representation for the majority of less common terms, plewi
economical storage of the total index, and also allows vasy &éxecution of queries,
even long ones. In addition, the average per-query volumedsfx data that must be
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transferred from disk is around half of the best of any of ttheepapproaches that were
tested.

These finding have immediate implications in document $eard retrieval applica-
tions, which often select answers based on conjunctioi, thié eventual ranking deter-
mined by the static factors such as assessed page qualiy,raak, and so on, that are
used to order the documents in the collection.

An area that we have not explored in these experiments istipiirase querying. When
some or all of the query terms must appear consecutively flmcament to match, more
elaborate positional indexing is required, so that woradimns within documents can also
be compared before answer documents are identified. Eveéimesfirst step in processing
such queries is to determine whether the set of query terrexisdin the document in a
conjunctive sense. Once that has been determined, a segamiizx of word positions for
the terms in that document can be used to establish wheth®tdhe phrase itself also
occurs. That is, the techniques described in this paperlsoeapplicable to phrase and
other complex querying tasks.
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