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Conjunctive Boolean queries are a key component of modern information retrieval systems, espe-
cially when web-scale repositories are being searched. A conjunctive query q is equivalent to a
|q|-way intersection over ordered sets of integers, where each set represents the documents con-
taining one of the terms, and each integer in each set is an ordinal document identifier. As is the
case with many computing applications, there is tension between the way in which the data is rep-
resented, and the ways in which it is to be manipulated. In particular, the sets representing index
data for typical document collections are highly compressible, but are processed using random
access techniques, meaning that methods for carrying out set intersections must be alert to issues
to do with access patterns and data representation. Our purpose in this paper is to explore these
tradeoffs, by investigating intersection techniques that make use of both uncompressed “integer”
representations, as well as compressed arrangements. We also propose a simple hybrid method
that provides both compact storage, and also faster intersection computations for conjunctive
querying than is possible even with uncompressed representations.

Categories and Subject Descriptors: E.2 [Data Storage Representations]: Composite structures; H.3.2 [Infor-
mation Storage]: File organization; H.3.3 [Information Search and Retrieval]: Search process

Additional Key Words and Phrases: Compact data structures, information retrieval, set intersec-
tion, set representation, bitvector, byte-code

1. INTRODUCTION

The computation of set intersections is essential in information retrieval systems. The dom-
inant indexing data structure leveraged by search engines is theinverted index [Witten et al.
1999; Zobel and Moffat 2006]. In an inverted index, an ordered set of document identifiers
referred to as aninverted list or postings list is stored for each term that appears in the
collection, identifying which documents contain the term.These lists are then processed
via conjunctive Boolean queries in order to identify the subset of documents which contain
all of a given set of search terms – theconjunction, or intersection of the sets indicated by
the lists.

The literature describes a range of techniques for computing set intersections, falling
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broadly into two groupings:

—approaches that assume that the set are stored as sorted arrays of integers, and thus that
thed th integer in the list can be accessed inO(1) time; and

—approaches that assume that the lists are stored and accessed sequentially, possibly in
some compressed form, and thus that accessing thed th integer in the list might take
time that grows as a function ofd, even if it is sublinear ind.

Our presentation in this paper first explores the execution and cost of methods based around
these two quite different starting points, and evaluates their relative performance, assuming
throughout that all of the required data is being held in random-access memory. We then
re-visit a third set representation, one that is usually dismissed as being inordinately ex-
pensive for storing index data, but one that with judicious balancing of concerns provides
a notable speed up of set intersection operations, without adding greatly to the overall cost
of storing the index. We limit our investigation to in-memory indexes in order to provide
a clean abstraction for our efficiency evaluation in a mannersimilar to other recent em-
pirical investigations [Strohman and Croft 2007; Transierand Sanders 2008]. The next
section lays the foundation for all three of these approaches, by describing the underlying
operations required of all set data structures.

2. SET OPERATIONS AND SET INTERSECTION

There are two broad categories of operations on sets. Operations which return information
derived from the current state of a set are referred to asquery operations, and operations
which change the contents or state of a set areupdate operations.

2.1 Dictionaries and Sets

The dynamic dictionary abstract data type assumes that two update operations and one
query operation must be supported:

INSERT(S, x) Return the setS ∪ x.

DELETE(S, x) Return the setS − x.

MEMBER(S, x) ReturnTRUE, and a pointer tox if x ∈ S; otherwise return
FALSE.

The simplerstatic dictionary does not require the two update operations, but does require
that a suitable initialization process be provided that creates a queryable structure from a
list of the set’s members. Such “bulk load” processes are usually more efficient than a
sequence ofINSERT operations would be.

When the objects being stored in a static dictionary are integers, one simple representa-
tion of a static dictionary is as a sorted array of explicit values, referred to in this work as
the SAEV set representation, where “explicit” means that each ordinal integer is stored in
unmodified form, independently of the others in the set. TheMEMBER operation over a
set ofn items stored inSAEV format can be implemented inO(log n) time using binary
search.

Dictionaries are often used to build more elaborate data structures which support com-
posite set operations that typically manipulate multiple elements in a single atomic opera-
tion, and are constructed using one or more of the elemental operators listed above:
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INTERSECT(S, T ) Return the setS ∩ T .

UNION(S, T ) Return the setS ∪ T .

DIFF(S, T ) Return the setS − T .

EQUAL(S, T ) ReturnTRUE if S = T , otherwise returnFALSE.

SPLIT(S, x) Return the two sets{z | z ∈ S andz ≤ x} and
{z | z ∈ S andz > x}.

RANGE(S, x, y) Return the set{z | z ∈ S andx ≤ z < y}.
Note that theSPLIT andRANGE operations assume that the set is ordered, and that com-
parisons may be performed on the items being manipulated. Ifan ordering requirement
is added, several more primitive operations can be considered, including a “finger search”
mechanism:

PRED(S) Return a pointer to the element inS that immediately
precedes the current one.

SUCC(S) Return a pointer to the element inS that immediately
follows the current one.

F-SEARCH(S, x) Return a pointer to the least elementz ∈ S for whichz ≥ x,
wherex is greater than the value of the current element.

RANK(S, x) Return|{z | z ∈ S andz ≤ x}|.
SELECT(S, r) Return a pointer to ther th largest element inS.

In inverted index processing, theINTERSECT, UNION, andDIFF operations can be im-
plemented usingF-SEARCH, PRED, andSUCC operations. The latter three operators are
state-modifying, in that they require that a “current” element have been determined by a
previous operation, and in turn move that designator to a different element as a side ef-
fect of their execution. As the sequence of operations unfolds, the locus of activity shifts
through the set being processed. In some representations, these operations can in turn
be built on top ofRANK andSELECT. For instance,SUCC(S) can be implemented as
SELECT(S, 1 + RANK(S, c)), wherec is the current item.

2.2 Binary Intersection of Ordered Sets

The INTERSECT operation is the critical one involved in conjunctive Boolean query pro-
cessing; and also in ranked query processing when the ranking is a static one, based on
fixed attributes of the page, with all presented answers required to contain every query
term [Zobel and Moffat 2006]. To resolve these queries, the document collection is prepro-
cessed to generate a set of inverted lists, in which each termis represented by an ordered
set of ordinal document numbers in which that term appears. To process a conjunctive
Boolean queryq containing|q| terms, a|q|-way intersection of|q| pre-computed sets is
then required.

The simplest case is when|q| = 2, and two sets are to be intersected; and the most
obvious approach is to spendO(|S| + |T |) time on a standard sequential merge, picking
out the elements in common to the two sets via a loop in which a single comparison is made
at each iteration, and depending on the outcome of the comparison, aSUCC operation is
applied to one or the other of the two lists. This approach is the correct one forUNION

operations, in which the size of the output list isO(|S|+ |T |) and it is assumed that the two
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Algorithm 1 Binary set intersection

INPUT: Two ordered setsS andT , with |S| = n1 and|T | = n2, andn1 ≤ n2.

OUTPUT: An ordered set of answersA.

1: A← {}
2: x← FIRST(S)
3: while x is defineddo
4: y ← F-SEARCH(T, x)
5: if x = y then
6: APPEND(A, x)
7: end if
8: x← SUCC(S)
9: end while

10: return A

input sets may not be destroyed during the operation, but is not efficient forINTERSECT

in the cases when|S| ≪ |T |.
Algorithm 1 describes a more complex but also more efficient intersection algorithm, in

which each element of the smaller set,S, is tested against the larger set,T , and retained
if it is present [Hwang and Lin 1972]. The search retains state as it proceeds, with the
eliminator element,x, stepped through the elements ofS; and theF-SEARCH (finger
search) operation used inT to leapfrog over whole subsequences, pausing only at one
corresponding value inT for each item inS. An auxiliary operation,FIRST, is used to
establish an initial state inS; andT is implicitly assumed to have also been initialized, so
that the firstF-SEARCH starts from its least item.

The essential primitive operations in Algorithm 1 areSUCC andF-SEARCH, with |S|
of each performed. In fact, theSUCC operation in setS can be replaced by a symmetric
call to F-SEARCH(S, y) if SUCC is not available as an operation, but the expected num-
ber of elements jumped is just one, and in practiceSUCC is likely to execute faster than
F-SEARCH.

A range of ways in whichF-SEARCH can be implemented is discussed in the next
subsection, andSUCC can for most purposes be assumed to requireO(1) time.

2.3 Algorithms for Efficient F-Search

Binary search overn2 elements requires1+⌊logn2⌋ comparisons, and if setT is stored as
a sorted array of explicit values (SAEV format), then binary search can be used to underpin
the F-SEARCH operations required in Algorithm 1. In particular, binary search is the
optimal approach when|S| = 1. As a slight improvement, the current element inT can
be used to delimit the search, to gain an incremental benefit on the second and subsequent
F-SEARCH calls.

There are also other searching methods that can be applied toSAEV representations,
including linear search, interpolation search, Fibonaccisearch, exponential search (also
referred to asgalloping search by some authors), and Golomb search [Hwang and Lin
1972]. The desirable characteristic shared by these alternatives is that the search cost
grows as a function of the distance traversed, rather than the size of the array. For example,
linear search requiresO(d) time to move the finger byd items; and as is described shortly,
exponential search requiresO(log d) time [Bentley and Yao 1976]. A sequential linear
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Algorithm 2 GolombF-SEARCH

INPUT: A sorted listL of n elements, a pre-calculated Golomb parameterb, a
search keyx, and a current position inL indicated bycurr.

OUTPUT: An offset in the sorted listL if x is found, the offset of the successor of
x if not found, orENDOFLIST if x is greater thanL[n].

1: pos← curr + b
2: while pos < n and L[pos] < x do
3: curr← pos
4: pos← curr + b
5: end while
6: if pos > n then
7: pos← n
8: end if
9: offset← BINARY-SEARCH(L[curr + 1 . . . pos], pos− curr, x)

10: if offset = ENDOFLIST then
11: curr← pos
12: else
13: curr← pos + offset
14: end if
15: if curr > n then
16: return ENDOFLIST

17: else
18: return curr
19: end if

merge – dismissed above as being inefficient whenn1 ≪ n2 – results if linear search is
used in Algorithm 1.

In situations when1 ≪ n1 ≪ n2, use of exponential search in theF-SEARCH imple-
mentation is of considerable benefit. In an exponential search, probes intoT are made at
exponentially increasing rank distance from the current location, until a value greater than
the search key is encountered. A binary search is then carried out within the identified
subrange, with this “halving” phase having the same cost as the “doubling” phase that pre-
ceded it. In this approach eachF-SEARCH call requires1 + 2⌊log d⌋ comparisons, where
d is the difference between the rank of the finger’s previous position and the new rank of
the finger pointer. Overn1 calls for which

∑n1

i=1
di ≤ n2, the convex nature of the log

function means that at mostO(n1 + n1 log(n2/n1)) comparisons are required. Note that
this approach has the same worst case asymptotic cost as using binary search whenn1 is
O(1), and has the same worst case asymptotic cost as linear searchwhenn2/n1 isO(1).

If average comparison cost is of interest, theF-SEARCH can make use of theinterpo-
lation search mechanism [Gonnet et al. 1980]. This searching algorithm has an average
execution cost ofO(log log n) when the data is drawn from a uniform distribution, but in
the worst case might requiren comparisons. In practice, the running time of interpolation
search is often worse than binary search, because each comparison involves more associ-
ated computation and hence more time. However, modern processors are closing the gap
between interpolation and binary search, and complex calculations are becoming cheaper
than navigating across cache lines [Hennessy and Patterson2006].
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Algorithm 3 Small versus small intersection,svs

INPUT: A list of |q| ordered setsS1 . . . S|q|. The functionINTERSECT is
defined in Algorithm 1.

OUTPUT: An ordered set of answersA.

1: without loss of generality assume that|S1| ≤ |S2| ≤ · · · ≤ |S|q||
2: A← S1

3: for i = 2 to |q| do
4: A← INTERSECT(A, Si)
5: end for
6: return A

TheF-SEARCH algorithm can also be based onGolomb searching, in a mechanism de-
scribed by Hwang and Lin [1972]. Algorithm 2 shows an implementation of this technique.
Search proceeds in a manner somewhat similar to exponentialF-SEARCH, but with a fixed
forwards step ofb items used at each iteration. Once overshoot has been achieved, a bi-
nary search takes place over the (at most)b items that have been identified. When searching
through a set of sizen2 for the elements of a set of sizen1, the correct value for the stepb is
0.69(n2/n1), with a total search cost that is again proportional toO(n1 + n1 log(n2/n1))
[Gallager and van Voorhis 1975].

Variable-length integer coding techniques andF-SEARCH algorithms are duals of each
other. For example, linear search is the dual of the unary code; binary search the dual of
the binary code; the exponential search of Bentley and Yao [1976] is the dual of the Elias
Cγ code [Elias 1975]; and the search described by Hwang and Lin [1972] is the dual of the
Golomb code [Golomb 1966]. Likewise, the search method of Baeza-Yates [2004] is the
dual of the interpolative codes of Moffat and Stuiver [2000], and is conceptually similar to
the divide and conquer merging techniques explored by Moffat and Port [1990]. Via this
duality it is possible for any integer coding mechanism to beapplied to theF-SEARCH

task and then employed in an intersection algorithm onSAEV-representations.

3. MULTI-SET INTERSECTION

When more than two sets are being intersected, the simplest approach is to iteratively
apply the standard two-set intersection method using as a sequence of pairwise operations.
Algorithm 3 shows thissmall versus small (svs) approach. The smallest set is identified,
and then that set is intersected with each of the others, in increasing order of size. The
candidate set is never larger thanS1 was initially, so the worst-case cost of this approach
using aSAEV data representation using anF-SEARCH that takesO(log d) time to process
a jump of lengthd is given by

|q|
∑

i=2

n1 log
ni

n1

≤ n1(|q| − 1) log
n|q|

n1

,

where it is assumed that the sets are ordered by size, withn1 ≤ n2 ≤ · · · ≤ n|q|. The
svs method is simple and effective, and benefits from the spatiallocality inherent from
processing the sets two at a time. Even so, each differentF-SEARCH implementation
gives rise to a differentsvs computation.

Other svs-based approaches are also possible. For example, the divide and conquer
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binary intersection approach described by Baeza-Yates [2004] can also be iterated in a
small-versus-small manner.

3.1 Holistic Intersection Algorithms

The alternative to thesvs approach is to combine all of the sets using a single concerted
sweep through them all. The resultant holistic algorithms offer the possibility of being
adaptive to the particular data arrangement present, and can potentially outperform thesvs
approaches. Still working with theSAEV representation, the simplest holistic approach
is to treat each item in the smallest set as an eliminator, andsearch for it in each of the
remaining sets. Conceptually, this method is identical to an interleaved version ofsvs.
Other adaptive approaches have been proposed which primarily differ in the way that the
eliminators are selected at each iteration. Barbay et al. [2006] provide a detailed overview
of how such combinations interact, and summarize a range of previous work.

The two prevailing eliminator selection techniques are theadaptive algorithm of De-
maine et al. [2000], denotedadp for our purposes; and thesequential algorithm (seq) of
Barbay and Kenyon [2002]. Inadp, the sets are initially monotonically increasing in size.
At each iteration, the eliminator is the next remaining itemfrom the set with the fewest
remaining elements. If a mismatch occurs before all|q| sets have been examined, the sets
are reordered based on the number of unexamined items remaining in each set, and the
successor from the smallest remaining subset becomes the new eliminator. This approach
reduces the number of item-to-item comparisons expected tobe required, but at the possi-
bly non-trivial cost of reordering the|q| lists at each iteration of the main loop.

Barbay and Kenyon [2002] proposed an alternative modification, and suggest that every
list should be allowed to supply eliminators. Theirsequential algorithm, denoted here
asseq, uses as the next eliminator the element that caused the previous eliminator to be
discarded, and continues the strict rotation among the setsfrom that point. Only when an
eliminator value is found in all the sets – and hence is part ofthe intersection’s output – is
a new eliminator chosen from the smallest set. This approachhas the advantage that the
sets do not need to be reordered, while still allowing all of the sets to provide eliminators.
However, this method suffers from a practical disadvantage: moreF-SEARCH operations
are likely to accrue when the eliminator is drawn from a populous set than when it is drawn
from one of the sparse sets in the intersection.

3.2 Locality-Dependent, Adaptive Intersection

Holistic methods may have a memory access pattern that is less localized than dosvs
methods, because all of the sets are processed concurrently. To ameliorate this risk, we
propose a further alternative, described by Algorithm 4. The eliminator is initially drawn
from the smallest set. When a mismatch occurs, the next eliminator is the larger of the
mismatched value and the successor from the smallest set. Processing starts inS2 if the
eliminator is again taken fromS1, otherwise processing begins inS1. The intuition behind
this approach is two-fold. The first is that, while it is true that in the absence of other
information, the best eliminator will arise in the smallestset, the likelihood of another set
becoming significantly smaller thanS1 during processing is small. The second intuition is
that, having discovered a bigger than anticipated jump in one of the sets, that value should
naturally be tested against the first set, to see if additional items can be discarded.
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Algorithm 4 Max successor intersection,max

INPUT: A list of |q| ordered setsS1 . . . S|q|.

OUTPUT: An ordered set of answersA.

1: without loss of generality assume that|S1| ≤ |S2| ≤ · · · ≤ |S|q||
2: A← {}
3: x← FIRST(S1)
4: startat ← 2
5: while x is defineddo
6: for i = startat to |q| do
7: y ← F-SEARCH(Si, x)
8: if y > x then
9: x← SUCC(S1)

10: if y > x then
11: startat ← 1
12: x← y
13: else
14: startat ← 2
15: end if
16: break
17: else if i = |q| then
18: APPEND(A, x)
19: x← SUCC(S1)
20: startat ← 2
21: end if
22: end for
23: end while
24: return A

3.3 Multi-Set Intersection in Practice

In this section we empirically compare the intersection methods described in the previous
sections, still working exclusively in the framework established by theSAEV representa-
tion. First, we describe the origins of the data used, and consider the statistical properties
of two large query sets which form the basis of the empirical study. We then compare and
contrast the variousINTERSECT andF-SEARCH combinations, setting the scene for the
introduction of other representations in the Sections 4 and5.

Our experiments are based on the integer lists that comprisethe inverted index of the
GOV2 collection of theTREC Terabyte Track, seehttp://trec.nist.gov. The to-
tal collection contains just over25 million crawled web documents, roughly87 million
distinct alphabetic “words”, and occupies426 GB of space. The vocabulary and inverted
lists were constructed using theZettair search engine, seehttp://www.seg.rmit.
edu.au/zettair. Words that appeared with frequency one or two were assumed to be
handled outside of the set of inverted lists, for example, within the vocabulary. After this re-
duction, a total of19,783,975 index lists remained, each of which was then stored inSAEV

format as an ordered sequence of document numbers in the range1 to u = 25,205,181.
Two query sets were used for the experiments. The first query set was extracted from a
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Table I. The27,004 Microsoft queries and131,433 TRECqueries. The average query length for
the Microsoft andTREC queries is2.73 and4.00 terms respectively. The “averageni” columns
show the average number of integers per index list across allterms for queries of that length.

Query length
Microsoft queries TREC queries

Total Matches Averageni Total Matches Averageni

|q| queries (’000) (’000) queries (’000) (’000)
2 15,517 124 1,018 28,174 34 560
3 7,014 78 2,433 33,505 21 1,603
4 2,678 56 3,712 28,937 14 2,670
5 1,002 41 4,712 18,864 9 3,445
6 384 27 5,169 10,317 7 4,093
7 169 15 5,746 5,252 6 4,607
8 94 10 6,050 2,772 5 4,999

9+ 146 5 5,985 3,612 3 5,502

query log supplied by Microsoft, with the property that every query had a top-three result
in the .gov domain at the time it was originally executed. The second query set was
extracted from the 2005 and 2006TREC “million-query” track. All single word queries
from each set were eliminated, and the remaining queries filtered to ensure that each had
at least one conjunctive match in theGOV2 collection. There were a total of27,004 unique
queries retained in the Microsoft query set, all of length two or greater; and131,433 queries
retained in theTREC query set. Table I shows the distribution of query lengths inthe two
test sequences; the average number of document matches for each query length; and the
average number of documents containing each query term, computed for each query as
(
∑|q|

i=1
ni)/|q|. Compared to the Microsoft queries of the same length, theTREC queries

tend on average to involve terms that are less frequent in thecollection, and thus more
selective in terms of answer numbers. Across both logs, the longer queries tend to involve,
on average, terms that are more frequent in the collection; but even relatively short queries
of three words involved computing intersections over millions of document numbers.

In order to focus solely on the efficiency of the intersectionalgorithms being tested, the
inverted lists for the terms pertinent to each query were read into memory. The execution
clock was started, and that query executed five consecutive times, in each case returning the
full candidate set of document numbers. The clock was then stopped again, and theCPU

time for the run was added to a running total, according to thelength of the query evaluated.
For example, the time recorded for queries of length two drawn from the Microsoft query
set is the average of5× 15,517 = 77,585 query executions.

Figure 1 compares the averageCPU time per query for each intersection method. The top
pair of graphs show the baseline approach of combining binary search with the different
INTERSECT methods. The second row of graphs similarly shows the performance of the
same methods when GolombF-SEARCH is used; the third row, the performance of an
exponentialF-SEARCH; and the final pair of graphs the performance of anF-SEARCH

based on interpolation search. In each of the four pairs of graphs, the left-hand one shows
the measured behavior using the Microsoft query log, and theright-hand one shows the
measured behavior using theTREC query log.

Binary search (in the top pair of graphs) is relatively inefficient, as it generates more
cache misses than the other methods. The result is a noticeable performance degradation
relative to methods which achieve localized access. At the bottom of the figure, interpo-
lation search performs significantly fewer comparisons on average across allINTERSECT

methods (see Barbay et al. [2006]) and has a lower average case bound, but the added cost
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Fig. 1. Execution time required (inCPUmilliseconds) of intersection algorithms as a function of query length, for
two different query logs processed against theTREC GOV2 dataset, and assuming aSAEV set representation. All
experiments were carried out on a2.8 Ghz Intel Xeon with2 GB of RAM. Note the logarithmic vertical scale.
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Table II. Time required (inCPUmilliseconds) for thesvs intersection algorithms (which was the
most efficient in all cases) as a function of query length andF-SEARCH algorithm, for two different
query logs processed against theTREC GOV2 dataset, and assuming aSAEV set representation. All
experiments were carried out on a2.8 Ghz Intel Xeon with2 GB of RAM.

Query length Microsoft queries TREC queries
|q| Bin Inter Exp Gol Bin Inter Exp Gol

2 80 34 26 28 28 11 9 10
3 116 48 39 40 49 18 16 17
4 144 58 50 50 61 22 19 21
5 159 64 57 57 64 22 21 22
6 138 57 52 53 67 23 22 24
7 118 50 47 48 72 24 24 26
8 88 38 37 38 72 23 24 26

9+ 68 29 30 30 65 22 24 25

of the arithmetic involved in calculating each probe means that it is no faster that the other
searching approaches. In terms ofCPU performance, thesvs andmax methods outper-
form theadp andseq multi-set approaches, as a consequence of a more tightly localized
memory access pattern.

One issue that arose with the Golomb-basedF-SEARCH approach depicted in the third
row of graphs is the choice of parameterb. In thesvs implementation, the value ofb ap-
propriate to each list is chosen immediately prior to that list being included in the ongoing
sequence of intersections. But with theseq, adp, andmax approaches, a value ofb is com-
puted for each list at the commencement of processing, basedon the length of the shortest
list. That same set ofb values is then used throughout the computation, which meansthat if
the intersection yields only a few answers, then the searching procedure may useb values
that are too low.

The best overall choices across the different eliminator selection approaches are thesvs
and max mechanisms, coupled with the exponential search or Golomb search for short
queries, or coupled with the interpolative search for long ones. When conjunctive queries
are computed using these combinations, the execution timesof thesvs andmax methods
tend not to grow as more terms are added to the query. This is because the cost is largely
determined by the product of the frequency of the rarest element, and the number of terms.
The longer the query, the more likely it is to include at leastone low-frequency term, with
the sum of the marginal savings that accrue on each one of the binary intersections more
than recouping the cost of processing a greater number of lists.

Finally, note that the top two graphs also show the binary search-based method of Baeza-
Yates [2004], which is adaptive by virtue of the search sequence. It operates on two sets at
a time, but within those two sets has little locality of reference when compared to thesvs
andmax approaches, and is a little slower in practice.

Table II shows the average time in milliseconds for each of the fourF-SEARCH methods
when combined with thesvs approach, since it always the most efficient in practice. The
exponential search (Exp) and Golomb search (Gol) exhibit nearly identical performance
across all values of|q|, but with Exp having a slight edge throughout the range. This su-
periority could arise if the eventual answers to each query are not uniformly spread across
the document range, and instead tend to form clusters withinthe document space. Inter-
polation search (Inter) is also fast when|q| is large, when the last intersections performed
involve a very small set. Binary search (Bin) is never the fastest when combined with
the svs intersection method. These observations also hold true when theseF-SEARCH
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Table III. The average number ofF-SEARCH calls initiated for theTRECquery set. The
average length of the shortest list,n1, is also shown.

Query length n1 svs adp bya seq max

2 118,138 118,138 118,134 118,139 156,405107,191
3 150,801 183,918 183,086 183,921 273,401162,636
4 161,965 210,971 209,593 210,975 358,891184,154
5 156,616 210,167 208,721 210,172 404,953181,733
6 156,455 213,907 212,114 213,913 454,434183,682
7 154,810 216,606 214,231 216,613 511,181186,833
8 144,740 206,936 205,322 206,943 523,296178,123
9+ 127,778 185,787 184,036 185,797 549,895160,495

approaches are coupled with other algorithms, includingseq andadp.
Another way of quantifying efficiency is to count the number of F-SEARCH calls initi-

ated. Table III shows the average number ofF-SEARCH calls required across the131,433
TRECqueries, categorized by query length. The number of calls toresolve any given query
is largely a function of the query length and the number of terms in the shortest list. How-
ever, as queries get longer, on average the rarest query termbecomes progressively less
frequent, and extended queries can involve fewerF-SEARCH calls than shorter ones, pro-
vided that an appropriate choice of eliminator is made at each step. In this regard, method
seq is clearly more expensive than the others, and the newmax method a little better.

From these experiments we conclude that when the sets in question represent term occur-
rences in documents in a large collection of web pages, and are stored inSAEV representa-
tion, the classic small-versus-small approach to intersection is the fastest. In combination,
the non-parameterized exponentialF-SEARCH implementation is the approach that is the
most versatile across the broad spectrum of query lengths.

4. COMPRESSED SET REPRESENTATIONS

The intersection methods discussed so far assume each set isstored inSAEV format as
a sorted array of explicit values. This is, however, an expensive way to store the sets
that arise from the inverted lists in information retrievalsystems, and any claims about
relative performance must be re-evaluated when more compact storage representations are
employed.

4.1 Compact Sequences of Relative Differences

The index lists in a retrieval system are commonly stored as lists of first-order differences,
or gaps, between consecutive items [Zobel and Moffat 2006]. Withinthis broad framework
there are then many possible ways of representing the differences, and we will refer to
these generically as beingcompact sequence of relative differences, or CSRD approaches,
and take as axiomatic that the items in the sequence are unique integers and sorted, and thus
that the differences are all strictly positive. For example, when converted to differences,
the sorted set

S = {1, 4, 5, 6, 8, 12, 15, 16, 18, 20, 25, 26, 27, 28, 30} ,

is transformed to

{1, 3, 1, 1, 2, 4, 3, 1, 2, 2, 5, 1, 1, 1, 2} ,
which is then stored using some form of variable-length codethat favors small values over
large.
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As a combinatorial limit, a set ofn distinct items drawn from the universe1 . . . u can be
represented in as few as

⌈

log2

(

u

n

)⌉

= log
u!

(u− n)!n!
≈ n

(

log
u

n
+ 1.44

)

, (1)

bits (see Brodnik and Munro [1999] or Sadakane and Grossi [2006] for discussion). Look-
ing at this bound from the point of view of a sequence ofn gaps〈di | 1 ≤ i ≤ n〉, any cod-
ing mechanism that represents the sequence inO(n log(u/n)) bits, whereu =

∑n

i=1
di,

is a compact representation, and is at most a constant factor inefficientcompared to the
combinatorial lower bound. In particular, any static integer code with the property that the
codeword for integerx requiresO(log x) bits can be used. Codes that meet this require-
ment include the Eliasγ andδ codes [Elias 1975]; and static byte-codes. Golomb codes are
explicitly fitted to the situation described, and if alln-subsets of1 . . . u are equally likely,
provide a one-parameter equivalent of the multi-parameterHuffman code that would be
derived from the probability distribution governing thed-gaps. Witten et al. [1999] and
Moffat and Turpin [2002] describe all of these methods, and we refer the reader to those
descriptions rather than repeat them here.

Unfortunately, theCSRD representations have a serious drawback: the differencingand
compression transformations both produce representations that must necessarily be ac-
cessed sequentially. This restriction means that primitive set operations other thanSUCC

are expensive. In particular, the only viableF-SEARCH alternative is essentially a linear
search, which means thatINTERSECT of lists of lengthn1 andn2 requiresO(n1 + n2)
time. EvenMEMBER queries incur anO(n) cost when using simpled-gap representations.
That is, compact set representations are space effective, but unless they are enhanced with
auxiliary structures, are not efficient for set intersection applications such as text retrieval.
Recent work onsuccinct set representations which use sophisticated bitvector representa-
tions provide a viable alternative to balancing efficiency and effectiveness, but it is unclear
how such data structures can be effectively integrated in current inverted index-based sys-
tems [Okanohara and Sadakane 2007; Claude and Navarro 2008].

4.2 Bitvectors

A set S of integer values over a known universe1 . . . u can also be represented using a
bitvector, in an approach we refer to asBITV. A bitvector is au-bit sequence in which
thex th bit is 1 if and only if x ∈ S. For example, assuming thatu = 32, the setS in
Section 4.1 would be represented as the bitvector10011101000100110101000011110100.
If the set being represented is dense over the universe1 . . . u, that is,u/n = O(1), then
bitvectors are both space-effective and also access-efficient. On the other hand, when
n ≪ u, bitvectors are more expensive than the compact representations described in the
previous subsection. Using a bitvector dramatically shifts the cost balance of several of
the primitive set operations. OperationsINSERT, DELETE, andMEMBER all takeO(1)
time in theBITV representation; butUNION, DIFF, andINTERSECT takeO(u) time, and
without additional support via auxiliary structures,F-SEARCH, SUCC, andPRED also
become more expensive. In practice,UNION, DIFF, andINTERSECT can benefit from
bit-parallelism to obtain a constant factor speedup, but this does not affectthe asymptotic
cost of the operations.

Control operations such asRANK andSELECT are also expensive in unadorned bitvec-
tor representations. If the application requires these or other control operations such as
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Table IV. Effectiveness of storage, and efficiency of access, for three different representations
of integer sets, with emphasis on the operations needed in text retrieval systems, assuming that a
subset ofn (and a second larger one of sizen2, where the operation has two parameters) items in
the range1 . . . u is being manipulated. In theF-SEARCH operation,d is the number of items that
are stepped over. In the case of theBITV approach and theF-SEARCH operation it is assumed that
then elements form a random subset of1 . . . u.

Attribute SAEV CSRD BITV

Space required (bits) n log u n(log(u/n) + 1.44) u

MEMBER (time) O(log n) O(n) O(1)
F-SEARCH (time) O(log d) O(d) O(u/n)
INTERSECT (time) O(n log(n2/n)) O(n + n2) O(u)

Table V. Total space cost (gigabytes) to store three different subsets of the inverted lists of
terms appearing in more than two documents in the426 GB TREC GOV2 collection.

Data Representation
TREC GOV2 Microsoft queries TREC queries

19,783,975 words 15,208 words 44,862 words
BITV 58,051.4 44.6 131.6
SAEV, 32-bit integers 22.6 14.1 17.1
CSRD, byte codes 7.4 3.8 4.8

Combinatorial limit 5.9 2.7 3.5

F-SEARCH, PRED, or SUCC, the basic bitvector representation is no longer sufficient. Ja-
cobson [1989] showed that the addition of a controlled amount of extra space allowsRANK

andSELECT to be supported inO(log u) time. As a consequence,SUCC, andPRED can
also be supported in equivalent time. Building on that work,Munro [1996] demonstrated
thatRANK andSELECT can be accomplished inO(1) time. The new structure, called an
“indexable” bitvector, depends on the use of auxiliary lookup tables which store cumula-
tive ranks for blocks of elements. The tradeoff for the performance boost is an additional
o(u) bits of space, required to store the lookup tables.

Additional variations on bitvectors have been reported recently, including some which
attempt to reduce the space overhead associated with sparsebitvectors (see for example,
Clark [1996], Pagh [2001], Raman et al. [2002], Okanohara and Sadakane [2007], and
Claude and Navarro [2008]). However, the space overhead canstill be significant in certain
set arrangements. Note that the crucial motivation for manyof the alternative bitvector
arrangements is support for efficientRANK andSELECT operations, neither of which are
strictly necessary for set intersection.

Table IV summarizes the three alternative set representations that have been discussed.
In each case it is assumed that a subset ofn items in the range1 . . . u is being manipulated,
and that theF-SEARCH operation steps pastd members of the set. The column headed
BITV further assumes that the set is dense. In the case of theCSRD andBITV represen-
tations, it is also assumed that no auxiliary information isbeing stored. (But note that in
both casesF-SEARCH operations can be faster when the base arrangement is augmented
by auxiliary index structures.)

4.3 Space Usage in Practice

Table V shows the cost of storing three different subsets of the inverted lists of theGOV2
collection. In the second column, every term that appears inmore than two of the collec-
tion’s documents has its list included in the sum, and the values represent the cost of storing
a full index. The third and fourth columns then show the cost of storing inverted lists for
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only the subsets of the terms required by the two query sets indicated by the column head-
ing. For example, storing the full set of inverted lists inSAEV format using32-bit integers
gives rise to an index of nearly23 GB. When compared with the combinatorial cost of the
full index (as defined in Equation 1, summed over all the lists) of 6 GB, the advantage
of storing the index inCSRD format is apparent. Byte codes coupled withCSRD format
do not attain the combinatorial bound, nevertheless they provide attractive space savings
compared to uncompressed integers andSAEV format. At the other end of the spectrum,
storing the full index inBITV format is prohibitively expensive; and even if only the re-
quired query terms are considered, theBITV format – which is the most efficient in terms
of MEMBER queries – is relatively costly, even if those terms could somehow have been
known in advance.

5. BALANCING SPACE AND TIME USAGE

For CSRD representations it is possible to accelerateF-SEARCH operations by adding ad-
ditional information to the compressed sequence. For example, Moffat and Zobel [1996]
add asynchronization point every

√
n th position, so that blocks of

√
n items can be by-

passed whenMEMBER andF-SEARCH operations involve search keys not present in that
block. More elaborate approaches have also been proposed which attempt to offset the
costs of a linear scan through alld-gaps using variations on balanced binary search trees.
Gupta et al. [2006] describe a two-level data structure where each level is itself search-
able and compressed, extending earlier work by Blandford and Blelloch [2004]. In the
Gupta et al. [2006] method, each block of elements at the lower level is represented as a
balanced binary search tree, and stored implicitly via a pre-order traversal, with additional
skip pointers embedded to find each child’s left subtree. Sitting on top of each tree block is
an index which allows the correct tree to be quickly identified. By balancing the size and
efficiency of the two structures, good asymptotic performance is achieved.

5.1 Auxiliary Indexing

In this section we propose a more pragmatic approach to address the same need. The
structure, which we refer to as anauxiliary index, balances space and time usage in a
relatively straightforward manner, and allows fast implementation. It makes use of a partial
index of uncompressed items together with offsets into the compressed sequence.

Figure 2 outlines the proposed arrangement. First, everyp th element is extracted from
the compressed list, added to an auxiliary array, and storedas an uncompressed integer.
The choice of a value forp is discussed shortly. Next, the remaining items are represented
asd-gaps, and stored as groups ofp − 1 differences, compressed sequentially. Finally, a
bit offset (or byte offset, in the case of byte-code compression techniques) is added to the
auxiliary array, so that the blocks of the compressed data can be accessed independently of
each other.

When aMEMBER operation is required, the keys in the auxiliary array are traversed
using anySAEV-based searching method, including theF-SEARCH approaches described
in Section 2. If the value being sought is located in the auxiliary array, it is returned. If
not, a sequential search is undertaken in the appropriate block ofp elements using aCSRD

mechanism. Alternatively, the block can be completely decompressed into an array, and
searched using aSAEV-basedMEMBER operation.

The cost of searching when the set containsn values is at mostO(log(n/p)) for a binary
search in the auxiliary index, followed byO(p)-time spent decoding and searching within
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Fig. 2. Auxiliary indexing. In this examplep = 4, so every fourth element from the original list (part(a), shaded
entries) is extracted and stored in the auxiliary array (part (b)), together with a byte offset to the block ofp − 1
remaining elements. The block elements are then encoded asd-gaps and compressed (part (c)).

the block. If p = k log n, for some constantk, the combined search cost for the two
phases isO(log n). In terms of space, and assuming an efficient code, the cost ofstoring
each difference islog(u/n) + 1.44 bits in an amortized sense. There are(p − 1) items
in eachp item block stored in this way, or(p − 1)n/p items in total. The othern/p
elements are stored in the auxiliary array, and requirelog u bits for each stored element,
pluslog(n log(u/n)) ≤ log n+log log u bits for the access pointer. Over both components
the cost is bounded by

p− 1

p
n

(

log
u

n
+ 1.44

)

+
n

p
(log u + log n + log log u)

bits, which is readily reformulated as

n
(

log
u

n
+ 1.44

)

+
n

p
(2 logn + log log u− 1.44) .

Then, whenp = k log n, this simplifies to

n
(

log
u

n
+ 1.44

)

+
n

k

(

2 +
log log u

log n
− 1.44

log n

)

,

which is less than

n
(

log
u

n
+ 1.44

)

+
n

k

(

2 +
log log u

log n

)

.

That is, for an additionalO(n/k) bits compared to Equation 1, the search time in the
compact representation reduces toO(k log n), provided thatn ≥ log u. In real terms, if
k = 1 andu ≤ 264, the additional cost of the auxiliary index is less than3 bits per pointer
whenn ≥ 64, and less than2.5 bits per pointer whenn ≥ 4096.
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Table VI. Total space cost (gigabytes) ofCSRD representation and auxiliary indexing, on the same basis asis
presented in Table V.

Data Representation
TREC GOV2 Microsoft queries TREC queries

19,783,975 words 15,208 words 44,862 words
CSRD, byte codes 7.4 3.8 4.8
CSRD, byte codes, auxiliary index,k = 4 8.0 4.1 5.1
CSRD, byte codes, auxiliary index,k = 2 8.5 4.4 5.5
CSRD, byte codes, auxiliary index,k = 1 9.5 4.9 6.2
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Fig. 3. Performance of set intersection algorithms for different query lengths against theTREC GOV2 dataset,
measured using a2.8 Ghz Intel Xeon with2 GB of RAM. In each of the two graphs twoCSRD-based methods
are shown:svs+bc, the sequential processing of byte-codes; andsvs+bc+aux, byte-codes indexed by an auxiliary
array withk = 2. Each graph also includes oneSAEV-based method,svs, a small-versus-small approach using
exponential search; and use of a pure bitvector approach,bvc. The vertical scale is the same as was used in
Figure 1, and the results here can be directly compared against the two columns of graphs in Figure 1.

A potential disadvantage of the new approach is thatF-SEARCH operations over a dis-
tance ofd are no longer guaranteed to takeO(log d) time. In the worst case, sequential
decoding of a block ofd-gaps can lead toO(log n) time instead. However, this is gen-
erally not a significant problem, as the block-based approach is well suited to blockwise
hierarchical memory models. When compared with the inline approach described by Mof-
fat and Zobel [1996], our blocks are smaller on average, and the skip pointers are main-
tained separately from the compressedd-gap sequence. The revised approach allows faster
F-SEARCH operations, and thus fasterINTERSECT computations, but at the cost of a
small amount of additional space. In recent independent work Sanders and Transier [2007]
also investigate two-level representations to improve intersection in compact sets. The key
difference between their work and ours is that they use a randomization technique to en-
sure that each bucket on average has aroundlog n items, and get the benefit of a simpler
auxiliary structure that can be implemented as a look-up table, whereas we count an exact
number of elements into each bucket, and hence need to searchwithin the auxiliary table
to identify the correct block.

5.2 Auxiliary Indexes in Practice

Table VI shows the total space usage to store the fullGOV2 index and two index subsets
used in the experiments inCSRD format, without the auxiliary index (this row is repeated
from Table V), and with an auxiliary index, using three different values ofk. The aug-
mented indexes all use more space than the fully byte-coded list, as expected, but even
with k = 1 the additional cost is relatively modest.

Figure 3 compares theSAEV binary representation and the alternativeCSRD representa-
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tion. Fully compressed representations such as thesvs+bc approach perform well for short
queries, but are much slower than theSAEV-basedsvs approach on longer ones, in which
it is more likely that at least some common terms will arise. Use of the auxiliary array in
the svs+bc+aux method increases processing speed on long queries, and allows intersec-
tions to be handled in times closer to those attained by the uncompressedsvs approach.
This improvement is a result of intersection benefiting fromnon-sequential access and, as
queries get longer, the increasing sparsity of the most discriminating term list.

Figure 3 also shows the time taken by the bitvector approach,bvc, which is usefully
fast on short queries, but as expected, has a cost that grows approximately linearly in the
number of query terms. Bitvectors are able to store common query terms in relatively small
amounts of space. Indeed, their only real deficiency is the exorbitant storage costs for rare
terms, an observation that leads directly to the hybrid approach that is explored in the next
section.

5.3 Hybrid Representations

The simplicity of bitvectors, and their useful blend of efficiency and effectiveness for
INTERSECT and MEMBER queries on dense sets, suggests that using them to store at
least some of the term lists of the index may be beneficial. To this end, we now consider a
hybrid approach, in which the dense lists in the index, corresponding to frequently occur-
ring terms, are stored using aBITV representation, and the sparse terms are stored using a
CSRD representation. Given that each byte-coded difference occupies a minimum of eight
bits, using a bitvector for all terms that occur in more thanu/8 of the documents in a col-
lection containing a total ofu documents cannot increase the index size. Other thresholds
are also possible, and in the experiments described shortly, the bitvector representation is
used whenever more thanu/k of the documents contain that term, for values ofk in the
set{8, 16, 32}.

Two alternative ways of using the resultant hybrid index have been evaluated. In the
first method, denotedhyb+m1, the sets of byte coded and bitvector lists are intersected
separately, and then combined using a sequence ofO(1)-time MEMBER operations. That
is, if there are anyBITV terms, they are intersected using bitwiseAND operations to yield
a bitvectorB. If there are no byte-codedCSRD sets, then the expanded set of document
numbers derived fromB is returned. Or, if there are byte-coded sets, they are intersected
using thesvs approach to yield a candidate setC. Then, if there are no bitvector sets,C is
returned. Otherwise, for eachx ∈ C, if B[x] = 1, thenx is appended to the answer set.

In the second hybrid method,hyb+m2, all byte-coded lists are intersected to produce a
candidate list. Then, each of the remaining bitvector listsis searched via aMEMBER query,
replacing the bitvectorINTERSECT operations with multipleMEMBER operations, each
of which takesO(1) time. The motivation for this alternative comes from the realization
that intersection of the byte-coded sets should result in a sparse set of potential candidates,
and that a sequence ofMEMBER queries may be preferable to anyO(u)-time INTERSECT

operations. Algorithm 5 describes this second approach in detail.

5.4 Hybrid Representations in Practice

Table VII shows the cost of storing theGOV2 index data using compressed lists and bitvec-
tors in a hybrid approach. The most effective partitioning point for the compact hybrid
representation isk = 8, with terms occurring in fewer thanu/8 = 3,150,648 documents
stored using aCSRD approach and the byte-code representation. Note that whenk = 8
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Algorithm 5 Hybrid intersection method two,hyb+m2

INPUT: A list of CSRD-representation byte coded term listsCSRD1 . . . CSRDx,
and a list ofBITV-representation term lists,BITV1 . . . BITVy, where
x + y = |q|.

OUTPUT: An ordered set of answers, as32-bit integers.

1: A← {}
2: if x = 0 then
3: B ← BITV1

4: for i← 2 to y do
5: B ← B bit-and BITVi

6: end for
7: return DECODE-BITV(B)
8: end if
9: C ← DECODE-CSRD(CSRD1)

10: for i← 2 to x do
11: C ← INTERSECT(C, DECODE-CSRD(CSRDi))
12: end for
13: for i← 1 to y do
14: for eachd ∈ C do
15: if NOT MEMBER(BITVi, d) then
16: DELETE(C, d)
17: end if
18: end for
19: end for
20: return C

Table VII. Total space cost (gigabytes) of hybridBITV/CSRD representations, on the same basis as is pre-
sented in Table V and Table VI.

Data Representation
TREC GOV2 Microsoft queries TREC queries

19,783,975 words 15,208 words 44,862 words
Hybrid bitvector and byte code,k = 32 8.9 4.9 6.2
Hybrid bitvector and byte code,k = 16 7.3 3.7 4.7
Hybrid bitvector and byte code,k = 8 6.9 3.4 4.3

there is a net saving compared to the fully byte-coded index (Table V), because even in the
dense term lists, there are somed-gaps that require more than one byte to code. Even with
k = 16 the overall index is smaller than the byte-coded one, and thesame relationship
holds for the subsets of the term lists that appear in the two experimental query streams.

Table VIII shows the fraction of theGOV2 collection’s index lists that are handled as
bitvectors, for three different threshold valuesk. As a fraction of the vocabulary of the
collection, the terms that are sufficiently frequent to warrant bitvector index lists are a tiny
minority, even whenk = 32. But when the two query logs are evaluated, a much greater
fraction of bitvector terms arises, because queries tend not to use the rare terms. The top
pane of Figure 4 lists the188 most frequent terms in theGOV2 collection, each of which
appears in more than one eighth of the web documents in the collection, so is stored as
a bitvector in the hybridBITV/CSRD method whenk ≥ 8. The bottom pane then shows
a sequence of ten consecutive queries extracted from theTREC query log, with each of
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Table VIII. Fraction of index lists stored and processed as bitvectors for three different threshold values
k, and two different query streams. Just188 index lists are stored inBITV format whenk = 8 (listed in
Figure 4); even so, one or more of those terms appears in35% of the Microsoft queries, and in50% of the
TRECqueries.

Attribute
Hybrid parameter

k = 8 k = 16 k = 32

Fraction of index lists stored inBITV format 0.001% 0.003% 0.007%
Fraction of Microsoft queries with oneBITV index list 24.6% 31.0% 34.6%
Fraction of Microsoft queries with multipleBITV index lists 10.7% 21.0% 33.5%
Fraction ofTREC queries with oneBITV index list 28.6% 29.2% 26.8%
Fraction ofTREC queries with multipleBITV index lists 21.9% 33.7% 47.9%

of to the and for a in on by this is information with home from ator are as not all 1 be us other state
search last contact new an page 2 that about national data public may have site if 3 department use you
no 2003 available more 4 5 services has privacy center which resources your will it 10 name service
number was system help date library can please only also 7 office research 6 one been i these 8
program 2000 15 health related its 12 management through seebut links 30 federal states s do report
development any index washington support following who year than type 25 when general programs
20 2001 subject first description using where administration out used 2002 their comments modified
11 email policy 23 web 9 questions there time 19 government updated security each map title 16 order
make back code find part united law within such accessibilitycurrent 14 advanced does 13 both two
our how areas years over d they local were c 22 next county includes include 31 disclaimer under
agency area into based click need

weather in8 london how8 to8 find8 out8 your8 body32 mas index8

red32 dead revolver cheats grand theft auto san32 andreas cheat codes
vacuum tube pins heaven dj sammy and8 yanou
wings of8 desire escort ny vegetable disease32 control16 sprays
pinnacle village bike rentals on8 the8 carolina islands

Fig. 4. The188 most frequent words in theGOV2 collection, in decreasing order of the number of documents
containing them, each of which appears in more than one eighth of the approximately25 million web documents
(top pane); plus a sequence of ten queries extracted from theTRECquery set, annotated to show which words are
represented as bitvectors for the three different values ofk that were tested.

the common terms annotated to show the value ofk (of 8, 16, and32) at which that term
toggles fromCSRD format toBITV format in the hybrid arrangement. For example, the
query term “control” is stored inCSRD format using byte-codes whenk = 8, but is stored
as a bitvector whenk = 16 andk = 32.

Table IX shows the average cost of processing the set intersections arising from theTREC

query stream using thehyb+m1 andhyb+m2 methods, broken down by query length, and
with techniques built on theSAEV, CSRD, andBITV representations also included. Three
different threshold pointsk = {8, 16, 32} are shown. Thesvs approach, using aSAEV

data representation, is efficient at all query lengths, and provides a competitive benchmark.
Even with the auxiliary index, theCSRD data representation is not competitive in terms of
query speed, and nor is the pureBITV representation. In the latter case, long queries are
especially expensive, because of the large amount of index data that must be processed via
binaryAND operations.

The hyb+m2 mechanism shown in Algorithm 5 is markedly superior to thehyb+m1
approach, with the difference between the two being the elimination of the binaryAND

operations. Even when the index size is minimized atk = 8, queries are resolved in times
similar to thesvs+bc+aux approach; and when a larger index is permitted usingk = 32,
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Table IX. Time required (inCPU milliseconds) to compute set intersections for theTRECquery set against
the GOV2 index using a2.8 Ghz Intel Xeon with2 GB of RAM, using different set representations, and
different intersection techniques. Thesvs+bc+aux method used a parameter valuek = 4. When random
access operations are available, even long queries can be processed quickly. These times may be directly
compared against those shown in the right-hand half of TableII.

|q| svs
svs+bc

bvc
hyb+m1 hyb+m2

+aux k = 8 k = 16 k = 32 k = 8 k = 16 k = 32

2 9 15 18 10 8 6 10 7 6
3 16 27 24 19 14 12 19 13 9
4 19 36 29 28 22 19 26 17 11
5 21 38 35 36 29 26 31 20 13
6 22 41 43 45 36 33 36 22 14
7 24 45 52 55 44 39 41 24 15
8 24 46 61 62 50 45 44 25 15

9+ 24 44 110 84 65 61 55 28 17
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Fig. 5. Tradeoffs between index cost and query throughput, with the average time taken over all queries, in
milliseconds per query, plotted as a function of the averageamount of index data processed in MB per query, for
two different query sequences.

the execution times fall below the benchmark provided by thepuresvs approach.

5.5 Bringing It All Together

Figure 5 summarizes the various measurements that have resulted from our experiments.
The axes of the two graphs represent the primary resources consumed during querying
in a text retrieval system – the average amount of data transferred from secondary stor-
age into memory in order for a query to be resolved (or from memory into cache, in a
memory-resident system); and the averageCPU time taken per-query to process that data
and determine the conjunction of the query terms. In each of the two graphs the average is
computed over the full set of queries:27,004 Microsoft queries in the left-hand graph, and
131,433 TREC queries in the right-hand one. The layout of the graphs meansthat methods
in the top-right corners involve both high data volumes and long query-processing times,
and are relatively uninteresting. On the other hand, methods along the lower-left frontier
define a range of interesting options.

The “pure” CSRD byte-coded index, denotedsvs+bc is the slowest of the methods
shown. It is not competitive with alternatives that providefast MEMBER queries, and
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the simple tactic of adding an auxiliary index (the connected points labeledsvs+bc+aux)
reduces execution time by a factor of as much as four. The pureBITV approach (the point
labeledbvc in each graph) is also relatively fast, and requires surprisingly little data trans-
fer – the many low-frequency terms that cause the extreme storage cost of the bitvector
index (Table V) are not ones that occur in typical queries; and the terms that do occur in
typical queries are relatively efficient when stored as bitvectors. For the same reason, the
bvc approach also requires less data to be transferred for average queries than does the pure
SAEV approach, labeledsvs in the graphs, while operating at comparable speed.

The clearly best method amongst those illustrated in Figure5 is theBITV/CSRD hybrid
method described in Section 5.3. It outperforms the other implementations in terms of
both speed and data traffic – being faster than theSAEV-basedsvs method; and requiring
less data to be transferred per query than the pureCSRD-mode byte-coded index. It also
offers a clear tradeoff between query speed and data transfer cost. Withk = 32 the stored
index is a little larger and per-query data costs are a littlehigher than withk = 8, but query
throughput approximately doubles.

6. CONCLUSIONS

Three distinct representations for sets and for computing set intersections have been ex-
amined, and experiments carried out to quantify the usefulness of each. The particular
application considered is that of finding the conjunction ofa set of query terms, where
the sets being intersected represent the identifiers of web pages in a crawl of the.gov
domain, and the conjunction of the terms identifies the web pages that contain all of the
query terms. The query streams used are both drawn from web search engine logs.

The key findings from this work are that:

—Storing the sets as sorted arrays of explicit values (SAEV format) allows fast intersections
to be computed, with the cost determined more by the frequency of the rarest term in the
query than by another other factors, including the number ofterms in the query. Of the
various algorithms for working withSAEV representations, the traditionalsvs method
provides fast execution, but the newmax method described in this paper is almost as
fast, and requires fewerF-SEARCH calls.

—But, as is already well known, the total storage requirement for SAEV-format index
information is high.

—Storing the sets as compact sequences of relative differences (CSRD format) is much less
costly in terms of storage space, but makesMEMBER operations more expensive, and
hence intersection operations slower. Even when an auxiliary index of the type described
in this work is added, querying time remains slower than withtheSAEV format andsvs
approach.

—Storing the sets as bitvectors (pureBITV format) is expensive in terms of total index
storage space, but for typical query sequences allows fast computation of intersection,
with data transfer requirements that are not dissimilar to those associated withCSRD

format representations.

—A hybrid index arrangement combiningBITV representation for a minority of very com-
mon terms, andCSRD representation for the majority of less common terms, provides
economical storage of the total index, and also allows very fast execution of queries,
even long ones. In addition, the average per-query volume ofindex data that must be
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transferred from disk is around half of the best of any of the other approaches that were
tested.

These finding have immediate implications in document search and retrieval applica-
tions, which often select answers based on conjunction, with the eventual ranking deter-
mined by the static factors such as assessed page quality, page rank, and so on, that are
used to order the documents in the collection.

An area that we have not explored in these experiments is thatof phrase querying. When
some or all of the query terms must appear consecutively for adocument to match, more
elaborate positional indexing is required, so that word locations within documents can also
be compared before answer documents are identified. Even so,the first step in processing
such queries is to determine whether the set of query terms co-exist in the document in a
conjunctive sense. Once that has been determined, a secondary index of word positions for
the terms in that document can be used to establish whether ornot the phrase itself also
occurs. That is, the techniques described in this paper are also applicable to phrase and
other complex querying tasks.
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