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ABSTRACT
For over forty years the dominant data structure for ranked doc-
ument retrieval has been the inverted index. Inverted indexes are
effective for a variety of document retrieval tasks, and particularly
efficient for large data collection scenarios that require disk access
and storage. However, many efficiency-bound search tasks can now
easily be supported entirely in-memory as a result of recenthard-
ware advances.

In this paper we present a hybrid algorithmic framework for in-
memory bag-of-words ranked document retrieval using a self-index
derived from the FM-Index, wavelet tree, and the compressedsuffix
tree data structures, and evaluate the various algorithmictrade-offs
for performing efficient queries entirely in-memory. We compare
our approach with two classic approaches to bag-of-words queries
using inverted indexes,term-at-a-time(TAAT ) anddocument-at-a-
time (DAAT ) query processing. We show that our framework is
competitive with state-of-the-art indexing structures, and describe
new capabilities provided by our algorithms that can be leveraged
by future systems to improve effectiveness and efficiency for a va-
riety of fundamental search operations.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—indexing methods; H.3.2 [Information Storage and
Retrieval]: Information Storage—file organization; H.3.3 [Inform-
ation Storage and Retrieval]: Information Search and Retrieval—
query formulation, retrieval models, search process; I.7.3 [Docu-
ment and Text Processing]: Text Processing—index generation

Keywords
Text Indexing, Text Compression, Data Storage Representations,
Experimentation, Measurement, Performance

1. INTRODUCTION
Top-k retrieval algorithms are important for a variety of real

world applications, including web search, on-line advertising, re-
lational databases, and data mining. Efficiently ranking answers to
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queries in large data collections continues to challenge researchers
as the collection sizes grow, and the ranking metrics becomemore
intricate. Despite recent hardware advances, inverted indexes re-
main the tool of choice for processing efficiency-bound search tasks
[17]. However, large memory systems also provide new opportu-
nities to explore another class of indexing algorithms derived from
thesuffix arrayto potentially improve the efficiency of various in-
memory ranked document retrieval tasks [25, 27].

In this paper we present a hybrid algorithmic framework for in-
memory bag-of-words ranked document retrieval using a self-index
derived from theFM-Index, wavelet tree, and thecompressed suf-
fix tree data structures [12, 20, 27, 22], and evaluate the various
algorithmic trade-offs for performing efficient in-memoryranked
querying. We compare our approach with two classic approaches to
bag-of-words queries using inverted indexes,term-at-a-time(TAAT )
anddocument-at-a-time(DAAT ) query processing. We show that
our framework is competitive with state-of-the-art indexing struc-
tures, and describe new capabilities provided by our algorithms that
can be leveraged by future systems to improve efficiency and effec-
tiveness for various document retrieval tasks.

Our contributions . Firstly, we propose a hybrid approach to solv-
ing a subset of important top-k document retrieval problems –bag-
of-wordsqueries. Secondly, we present a comprehensive efficiency
analysis comparing in-memory inverted indexes with top-k self-
indexing algorithms for bag-of-words queries on text collections an
order of magnitude larger than any other prior experimentalstudy.
To our knowledge, this is the first comparison of this new algorith-
mic framework for realistic sized text collections using a standard
similarity metric –BM25. Finally, we describe how our algorithmic
framework can be extended to efficiently and effectively support
other fundamental document retrieval tasks.

2. PROBLEM OVERVIEW
In this paper, we investigate the use of self-indexing algorithms

to solve thetop-k document search problem. A document col-
lectionT is a contiguous string drawn from an alphabetΣ, where
σ = |Σ| is the number of distinct “terms” or strings. In practice,Σ
can be characters (UTF8 or ASCII), bytes, integers, or even phrases.
Each document inT is separated by a unique end of document
symbol defined to be lexicographically smaller than anys ∈ Σ.

DEFINITION 1. A top-k document searchtakes a queryq ∈
Σ, an integer0 < k ≤ d, and a textT ∈ Σ partitioned into
d documents {D1,D2, . . . ,Dd}, and returns the top-k documents
ordered by a similarity measureS(q,Di).

In this work, we focus primarily on bag-of-words queries, soour
baselineS(q,Di) ranking function isBM25. OurS(q,Di) ranking
function has the following formulation:



BM25 =
∑

t∈q

log

(

N − ft + 0.5

ft + 0.5

)

· TFBM25

TFBM25 =
fd,t · (k1 + 1)

fd,t + k1 · ((1− b) + (b · ℓd/ℓavg))

Here,N is the number of documents in the collection,ft is the
number of distinct document appearances oft, fd,t is the number
of occurrences of termt in documentd, k1 = 1.2, b = 0.75, ℓd is
the number of symbols in thedth document, andℓavg is the average
of ℓd over the whole collection. The free parametersk1 andb can
be tuned for specific collections to improve effectiveness,but we
use the standard Okapi parameters suggested by Robertson etal.
[36].

3. ALGORITHMS
We now present an overview of the key data structures and al-

gorithms used in our framework. Here, we only outline the key
properties and features of wavelet trees and suffix arrays used in
our search engine; for a more in-depth tutorial, see, for exam-
ple Navarro and Mäkinen [30] and the references therein. Efficient
operations in succinct data structures depend on two fundamental
operations over a bitvectorB[0, n− 1]:

RANK0/1(B, i): Return the number of0’s/1’s in B[0, i].
SELECT0/1(B, i): Return the position of theith of 0’s/1’s in B.

Both operations can be performed in constant time. A simple con-
stant time RANK0/1 solution useso(n) space in addition to storing
B [23]. More space efficient RANK0/1 algorithms are possible [35].

3.1 Wavelet Trees
Efficient RANKs and SELECTs over an alphabet of sizeσ > 2

can be performed using a wavelet tree [20]. A wavelet tree de-
composes the RANKs and SELECTs operations over[0, σ − 1] into
RANK0/1 and SELECT0/1 operations on a binary alphabet using
a binary tree. The root of the tree represents the whole alpha-
bet. Its children represent each half of the alphabet of the par-
ent node. Each leaf node in the tree represents one symbol in
[0, σ−1]. When answering the RANKs query for a specific symbol
s, we perform RANK 0/1 operations at each level in the tree until
we arrive at the leaf node representings. The overall RANKs(T , i)
can be computed by combining the RANK 0/1 results at each tree
level inO(log σ) time. Any symbols = T [i] is also computed
in timeO(log σ) with a similar algorithm; we call this operation
ACCESS(T , i). Using a succinct representation of RANK0/1 and
SELECT0/1 [35], a wavelet tree requiresnH0 + o(n log σ) bits of
space, whereH0 ≤ log σ is the zero-order entropy ofT .1

Wavelet trees are a surprisingly versatile data structure,and have
attractive time and space bounds for many primitive operations in
self-indexing algorithms [14]. As a result, many top-k document
retrieval approaches rely heavily on wavelet trees. A subset of im-
portant wavelet tree operations include:

RANKs(T , s, sp, ep): Return the number of occurrences
of symbols in a rangeT [sp, ep].

SELECTs(T , s, j, sp, ep): Return the position of thejth oc-
currence of symbols in a range
T [sp, ep].

ACCESS(T , i): Return symbolT [i].

1We assume logarithms are in base 2.

RMQ(T , sp, ep): Return the smallest symbols in a
rangeT [sp, ep].

RQQ(T , k, sp, ep): Return thekth smallest symbols in
a rangeT [sp, ep].

3.2 Self-indexing
A suffix arraySA[0, n−1] overT stores the offsets to all suffixes

in T in lexicographical order. Any patternP of lengthm occurring
in T is a prefix of one or more suffixes inSA. These suffixes, due
to the lexicographical order withinSA, are grouped together in a
rangeSA[sp, ep]. To determineSA[sp, ep], we perform two binary
searches overSA andT . Each binary search comparison requires
up tom symbol comparisons inT , for a total ofO(m log n) time.
Using additional auxiliary data structures this cost can bereduced
toO(m + log n) [25]. Suffix array construction is a well studied
problem, and many solutions with various time and space trade-offs
exist in the literature [34]. However, searching for a pattern P in
T using only a suffix array requiresO(n log n) bits to store both
T andSA, which in practice is at least5 times the text size.

By replacingT with the Burrows-Wheeler Transform (BWT)
permuted text, the key operations of a basicSA can be emulated
with much less space, close to the size ofT in compressed form.
The Burrows-Wheeler Transform [7] – also known as the block-
sorting transform – produces a permutation of a stringT , denoted
T BWT , by sorting then cyclic rotations ofT into full lexicographi-
cal order, and taking the last column of the resultingn× n matrix.
The resulting stringT BWT tends to be more compressible as sym-
bols are grouped together based on their context inT , which makes
theBWT an important part in many state of the art compression sys-
tems [26]. To produceT BWT for a given textT , it is not necessary
to constructM as there is a duality betweenT BWT and theSA over
a textT : T BWT [i] = T [SA[i]− 1 modn].

The original textT can be recovered fromT BWT in linear time
without the need for any additional information. To recoverT from
only T BWT we first recover the first column,F , in M by sort-
ing the last column (L = T BWT), in lexicographical order. By
mapping the symbols inL to their respective positions inF so
L[i] = F [j] (usually referred to as theLF mapping,j = LF(i))
we can recoverT backwards asT [n − 1] = T BWT [0] = $ and
T [j − 1] = T BWT [LF(i)] if and only if T [j] = T BWT [i]. SinceF
is simply a sort of then characters of the string in lexicographical
order, it can be represented succinctly as a lookup table of alphabet
characters along with the count of all symbols that appear before
the current characterc. The LF mapping is computed using the
equation

LF(i) = LF(i, c) = C[c] + RANKs(T
BWT , i) (1)

wherec is the symbolT BWT [i], andC[c] stores the number of sym-
bols inT BWT smaller thanc.

Performing a search inT using theBWT permuted text is straight-
forward. Recall that all rows are sorted in lexicographicalorder in
M. Therefore, for a patternP , all occurrences ofP in T must
have a corresponding row inM within a range〈sp, ep〉. To deter-
mine the range withinM, we first determine the range〈spm, epm〉
withinM that corresponds toPm usingC[ ]. Then, for each sym-
bol j = m−1 . . . 0 inP , we iteratively find

〈

spj , epj
〉

by calculat-
ing the number of rows within

〈

spj+1, epj+1

〉

that are preceded by
the symbolPj in T . For a given rowj, theLF mapping can be used
to determine the row inM representing the symbol precedingj in
T . The preceding row is determined by counting the number of oc-
currences ofc = T BWT [j] beforethe current row and ranking these
occurrences withinC[s]. Assume we have located

〈

spj+1, epj+1

〉

,



which corresponds to the rows prefixed byP [j + 1,m]. Then

spj = LF(spj+1 − 1, pj) (2)

will calculate the position inF of the first occurrence ofPj within
〈spj+1, epj+1〉, and thus compute the start of our range of rows
withinM that correspond toP [j,m]. Similarly, we compute

epj = LF(epj+1, pj)− 1. (3)

Once the area〈sp, ep〉 is determined, self-indexes offer a way
to find any occurrence positionSA[j], for sp ≤ j ≤ ep. This
is accomplished by samplingT at regular intervals, and marking
positions ofSA that point to sampled text positions in a bitmap
E[0, n − 1]. Sampled suffix array positions are stored in an array
G[RANK 1(E, j)] = SA[j] if E[j] = 1. Given a target valueSA[j],
the successive valuesi = 0, 1, . . . are evaluated untilE[LFi(j)] =
1, producing the desired answer ofSA[j] = SA[LFi(j)]+i. If every
κth text position is sampled, we guaranteei can be found for every
0 ≤ i < κ, and sampling requiresO((n/κ) log n) extra bits for
G (and forE in compressed form [35]), and computes any entry of
SA within κ applications ofLF.

Similarly, in order to recover any text substringT [l, r − 1] (in-
cluding the wholeT ), we can use the same sampling of text posi-
tion multiples ofκ, and storeH [i] = SA−1[i · κ]. Thus, we extend
the range toT [l, r′ − 1], for r′ = κ · ⌈r/κ⌉ and display from
the suffix array positionj = SA−1[r′]. Then, we can display the
area backwards asT BWT [j], T BWT [LF(j)], T BWT [LF2(j)], . . .. Each
step requires one RANKs and one ACCESSoperation, which has
the same cost asLF. Therefore, we can displayT [l, r − 1] within
O(r − l + κ) probes ofLF.

In practice self-indexes can be reduced to a wavelet tree over
T BWT with auxiliary information to emulateF (theC array) and
the sampling information. This representation of a self-index is re-
ferred to as anFM-Index [12, 13]. A wavelet tree built overT BWT

usesnHk(T ) + o(n log σ) bits [24] for anyk ≤ α logσ(n) − 1
and constantα < 1, so the space requirements are reasonable.
Here Hk(T ) ≤ Hk−1(T ) ≤ . . . ≤ H0(T ) ≤ log σ is the
k-th order entropy ofT [26], a measure of the performance of
any compressor usingk-th order statistical modeling onT . Many
other self-indexing variations exist with different time /space trade-
offs [30, 15]. In principle, any of these approaches are compatible
with the framework we present here, as long as the method returns
a 〈sp, ep〉 range of matching suffixes.

4. TOP-K DOCUMENT RETRIEVAL USING
SELF-INDEXES

In order to efficiently solve thetop-k document search prob-
lem, unadorned self-indexing algorithms are not sufficient. Two
approaches to enhance the self-index have been proposed. The first
is to use adocument array, that is, a mapping between every suf-
fix in T to its corresponding document identifier [10, 18, 27, 41].
The second is to store, in addition to the global self-index,one self-
index of each individual document in the collection [22, 37]. These
alternatives offer different theoretical frameworks thatare not di-
rectly comparable, but experimental studies [10, 31] have consis-
tently shown that the first approach offers better space and time
performance in practice.

Representing the document array with a single wavelet tree can
provide additional important advantages. For example, thelist of
distinct documents where a substringP appears, with the corre-
sponding term frequencies, can be obtained without any additional
structure [18], inO(log d) time per document retrieved, once the
self-index has given the suffix array range ofP . This information
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Figure 1: Precomputed top-k results over fixed intervals g
stored in a skeleton succinct suffix tree using theHSV approach.
Only the fringe leaves are processed for a given〈sp, ep〉 range.

can then be used to calculate simpleTF×IDF basedS(q,Di) met-
rics at query time [37]. In addition, several other operations such
as Boolean intersection can be performed efficiently using only the
wavelet tree over the document array [19].

Culpepper et al. [10] showed how to use the same wavelet tree to
find the top-k documents (with raw term frequency weights) for a
stringP . Among all of the strategies proposed, the heuristic algo-
rithm GREEDY worked best in practice. Despite the lack of worst-
case theoretical guarantees, they show unadorned wavelet trees are
efficient in time and space for this task. Hon et al. [22] presented
a technique with worst-case performance guarantees. TheHSV ap-
proach builds on the same document listing strategy originally pro-
posed by Sadakane [37]. WhileHSV was originally described us-
ing individual self-indexes for each document as in Sadakane’s ap-
proach [37], the method can be applied on top of either document-
listing solution in practice. The key insight of theHSV method is
to precompute the top-k results for the lowest suffix tree nodes in
a predetermined sampling range. Figure 1 shows aHSV tree over
D. In this example, a〈sp′, ep′〉 range of sizeg is precalculated
and stored in a succinct suffix tree. An arbitrary query〈sp, ep〉 is
received. The bulk of the query result is already precomputed as
〈sp′, ep′〉. The remainder of the query can then be processed us-
ing RQQ queries over thefringe ranges to generate the final top-k
counts.

Usingg samples guarantees that any suffix array interval〈sp, ep〉
for a givenP falls into one of three categories: (1) The range is
completely covered by the sampled interval, and the top-k answer
is precomputed; (2) The range is partially covered, and at most 2g
fringe leaves must to be processed at query time and merged with
the sample; or (3) The range is too small to be covered. For Case
(3), the complete〈sp, ep〉 range must be processed at runtime, but
is guaranteed to be smaller than2g.

Navarro and Valenzuela [31] demonstrated that implementing
HSV over a document array, and using theGREEDY approach of
Culpepper et al. [10] to speed up document listing, is more ef-
ficient than using eitherGREEDY or HSV in isolation. The hy-
brid approach requires additional space to supportHSV on top of
GREEDY, but efficiency is significantly improved by limiting the
number of rank queries required at query time. This approachas
well as other trade-offs are explored more fully in this paper.
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Figure 2: The three fundamental components of an inverted index. Each term in the vocabulary is mapped to a posting list of〈d, fd,t〉
tuples. For each tuple, the position offsetsp∗ are also stored to support phrase or term proximity queries.

5. INVERTED INDEXES
Traditional approaches to thetop-k document search problem

rely on inverted indexes. Inverted indexes have been the dominant
data structure for a variety of ranked document retrieval tasks for
more than four decades [44]. Despite various attempts to displace
inverted indexes from their dominant position for documentrank-
ing tasks over the years, no alternative has been able to consistently
produce the same level of efficiency, effectiveness, and time / space
trade-offs that inverted indexes can provide (see, for instance Zobel
et al. [45]).

Figure 2 shows a typical inverted indexing system. The system
contains three key components: (1)Term Map- The vocabulary
of terms, along with the number of documents containing one or
more occurrence of the term (ft), the number of occurrences of
the term in the collection (Ft), and a pointer to the corresponding
posting list. (2)Posting Lists- An ordered list of tuples,〈d, fd,t〉,
containing the document identifier and the frequency of the term
in documentd. For each tuple, the ordered position offsets,p∗ are
also maintained in order to support phrase queries. For indexes
that do not require phase queries,p∗ can be omitted. (3)Document
Storage- A document map to matchd to the document name, and
a pointer to the document in a document cache.

Ranked document retrieval requires that only the top-k docu-
ments are returned, and, as a result, researchers have proposed
many heuristic approaches to improve top-k efficiency [1, 4, 5,
6, 32, 38]. These approaches can be classified in two general cat-
egories: term-at-a-time(TAAT ) and document-at-a-time(DAAT ).
Each of these approaches have various advantages and disadvan-
tages.

5.1 Term-at-a-Time Processing (TAAT )
For TAAT processing, a fixed number of accumulators are allo-

cated, and the rank contribution incrementally calculatedfor each
query term in increasing document order. When inverted filesare
stored on disk, the advantages of this method are clear. The in-
verted file for each term can be read into memory, and processed
sequentially. However, whenk is small relative to the total num-
ber of matching documents in collection,TAAT can be inefficient,
particularly when the number of terms in the query increases, since
all of the inverted lists must be processed before knowing the full
rank score of each document. In early work, Buckley and Lewit[6]
proposed using a heap of sizek to allow posting lists to be evalu-
ated inTAAT order. Processing is terminated when the sum of the
contributions of the remaining lists cannot displace the minimum
score in the heap.

Moffat and Zobel [29] improved on this pruning approach with
two heuristics:STOP andCONTINUE . TheSTOP strategy is some-
what similar to the method of Buckley and Lewit, but the termsare
processed in order of document frequency from least frequent to
most frequent. When the threshold ofk accumulators is reached,
processing stops. In contrast, theCONTINUE method allows the
current accumulators to be updated, but new accumulators cannot
be added. These accumulator pruning strategies only approximate
the true top-k result list.

If approximate results are acceptable, theTAAT approach can be
made even more efficient usingimpact ordering[1, 2, 33]. The key
idea of impact ordering is to precompute theTF for each document
a term appears in. Next, quantize theTF values into a variable
number of buckets, and sort the buckets (or blocks) for each term
in decreasing impact order. Now, the top-k representative can be
generated by sequentially processing each of the highest ranking
term contribution blocks until a termination threshold is reached.
The authors refer to this blockwise processing method asscore-
at-a-timeprocessing. Despite not using the fullTF contribution for
each term, Anh and Moffat [1] demonstrate that the effectiveness of
impact ordered indexes is not significantly reduced, but efficiency
is dramatically improved.

5.2 Document-at-a-Time Processing (DAAT )
The alternative approach is to process all of the terms simulta-

neously, one document at a time [8]. The advantage of this ap-
proach is that the final rank score is known as each document is
processed, so it is relatively easy to maintain a heap containing ex-
actlyk scores. The disadvantage is that all of the term posting lists
are cycled through for each iteration of the algorithm requiring non-
sequential disk reads for multi-word queries. However, ourfocus
in this paper isin-memoryranked retrieval, soDAAT tends to work
very well in practice.

Pruning strategies to further increase efficiency also exist for
DAAT processing. The most widely used pruning strategy forDAAT

is M AX SCORE. Turtle and Flood [40] observed that theBM25 TF

component can never exceedk1+1 = 2.2. So, the total score con-
tribution for any term is at most2.2 · log(N/Nt). Using this ob-
servation, Turtle and Flood present an algorithm that allows post-
ing values below the threshold to be skipped. As the minimum
bounding score in the heap slowly increases, more and more post-
ings can be omitted. EnhancedDAAT pruning strategies similar
in spirit to M AX SCORE have been shown to further increase effi-
ciency [4, 38].
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Turtle and Flood also describe a similar approach to improve
the efficiency ofTAAT strategies. However, theTAAT variant is
more complex than theDAAT approach as it requires an ordered
candidate list ofk documents to be maintained. The candidate list
is used to skip document postings in each term list which could
not possibly displace the current top-k documents once the heap
containsk items.

Fontoura et al. [17] compare severalTAAT andDAAT based in-
memory inverted indexing strategies. The authors present novel
adaptations ofM AX SCORE and WAND [4] to significantly im-
prove query efficiency of in-memory inverted indexes. The authors
go on to show further efficiency gains inDAAT style processing
by splitting query terms into two groups: rare terms and common
terms. The exact split is based on a fixed threshold selected at query
time. For our baselines, we useWAND for DAAT query processing,
andM AX SCORE for TAAT query processing.

6. SELF-INDEXING APPROACHES
We now describe our general approach to in-memory indexing

and retrieval. Figure 3 shows the key components of our retrieval
system: an FM-Index and the document array wavelet tree,WTd.
In addition, our system requires aDocument Mapto map docu-
ment identifiers to human readable document names (or URLs).No
document cache is required and the original documents or snippets
around each match can be recreated directly from the FM-Index
by extracting the required text positions using the suffix array sam-
pling. Only the items in grey are stored and used for character-
based top-k document retrieval. All other components are shown
for illustration purposes only.

ALGORITHM GREEDY-TAAT

INPUT A sorted listt of q terms.
OUTPUT A list of k documents in rank order.

1: Initialize a max-heapR← {}
2: for i← 1 to q do
3: Determine〈sp, ep〉 for termti
4: Ai ← GREEDY(sp, ep, k′)
5: end for
6: for i← 1 to q do
7: for j ← 1 to k′ do
8: if Ai[j] ∈ R then

9: UPDATE(R,Ai[j], score)
10: else
11: ADD(R,Ai[j], score)
12: end if
13: end for
14: end for
15: return R[1 . . . k]

FUNCTION GREEDY (sp, ep, k)

1: ℓ← WTd.root
2: A max-heap, sorted byep− sp, h← PUSH(ℓ, [sp, ep])
3: A priority queuePQ← {}.
4: i← 0
5: while h 6= ∅ and i < k do
6: ℓ, [sp′, ep′]← POP(h)
7: if ℓ is leaf then
8: PQ← ENQUEUE(ℓ.docid, ep′ − sp′ + 1)
9: i← i+ 1

10: else
11: [s0, e0]← [RANK0(Bℓ, sp

′), RANK0(Bℓ, ep
′)]

12: [s1, e1]← [RANK1(Bℓ, sp
′), RANK1(Bℓ, ep

′)]
13: if e0 − s0 > 0 then h← PUSH(ℓ.left, [s0, e0])
14: end if
15: if e1 − s1 > 0 then h← PUSH(ℓ.right, [s1, e1])
16: end if
17: end if
18: end while
19: return PQ

A simple bag-of-words search using a self-index retrieval system
is outlined in AlgorithmGREEDY-TAAT . Recall that thesp andep
range for any string can be found using a backwards search in the
BWT permuted text using only a wavelet tree overT BWT andC.
So, the〈sp, ep〉 for each query term in Line (3) can be calculated in
O(|ti| log σ) time using an FM-Index. Now, a wavelet tree over the
document arrayWTd can be used to retrieve exactlyk documents in
frequency order for each term usingGREEDY or QUANTILE [10].
This algorithm is analogous toTAAT processing, and is referred
to as GREEDY-TAAT . Note that FunctionGREEDY can also be
augmented withHSV as described in Section 4 to further increase
the efficiency of constructingAi for each query term.

We also present several variations on this general strategy. First,
we consider the addition ofHSV style precomputations overWTd

as described by Navarro and Valenzuela [31]. Instead of storing the
top-k most frequent symbols in the skeleton suffix tree, we store



Query length
TREC7 & 8 queries TREC WT10Gqueries

Total Matches Averageni Total Matches Averageni

|q| Queries (’000) (’000) Queries (’000) (’000)
1 100 9.9 9.9 100 3.3 4.7
2 100 24.8 12.5 100 68.6 42.5
3 100 104.5 38.5 100 292.8 123.2
4 100 238.1 69.0 100 601.1 166.6
5 100 351.2 95.1 100 866.5 228.5
6 100 408.7 107.8 100 1041.9 280.4
7 100 463.8 126.2 100 1149.7 319.6
8 100 489.8 148.3 100 1171.8 339.2

random sample 800 234.9 70.0 800 621.5 181.2

Table 1: Statistics of the queries used in experiments (sampled based on query length, or sampled from the filtered MSN query log),
reporting the number of queries run, the mean number of documents that contained one or more of the query terms, and the mean
length of the inverted lists processed.

the top-k most important symbols sorted by term impact for each
interval g to improve effectiveness. In order to capturek-values
commonly used in IR systems (k = 10, 100, 1000), we prestore
values of anyk that is a power of2 up to8192 in term contribution
order. Note that we go higher than1024 since the values ofk′ nec-
essary to ensure good effectiveness can be greater than the desired
k.

Observe that in typical bag-of-words query processing overEn-
glish text, the size of the vocabulary is often small relative to the
total size of the collection. As such, we also present a new hybrid
approach to top-k bag-of-words retrieval using aTerm Mapand
WTd. If we assume the vocabulary is fixed for each collection, then
the〈sp, ep〉 range for each term can be precalculated and retrieved
using a term map, as in the inverted indexing solution. This means
that the FM-Index component is no longer necessary when process-
ing bag-of-words queries. We refer to these hybrid approaches as
SEM-GREEDY and SEM-HSV. These methods reduce the overall
space requirements of our approach, but also limit the full func-
tionality of some auxiliary operations. For example, the text can no
longer be reproduced directly from the index, so snippets cannot
be generated on the fly, and phrase queries are no longer natively
supported. However, for classic bag-of-words queries, ourhybrid
approach provides an interesting trade-off to consider. Our final
variation is to support a term-based self-index. We refer tothis
approach asFM -TERM .

It is also possible to support aDAAT query processing strategy in
our retrieval system, but this would require efficiently supporting
RMQ over the document array. Our approach currently supports a
generalization ofRMQ – RQQ. But, the cost ofRQQ isO(log d) per
k value extracted, while constant time solutions forRMQ currently
exist [16]. However, anRMQ style approach as presented by Fis-
cher and Heun [16] incurs an additional2n bits of space, and so we
do not explore the possibility further in this work.

Also note the current top-k bag-of-words approach shown in
GREEDY-TAAT is based entirely on the frequency counts of each
item. This means that our current implementation only approxi-
mates the top-k items. This is a well-known problem in the inverted
indexing domain. This limitation holds for any character-based
bag-of-words self-indexing system that does frequency counting at
query time since we can not guarantee that itemk + 1 in any of
the term lists does not have a higher score contribution thanany
item currently in the top-k intermediate list. A method of term
contribution precalculation is required in order to support BM25 or
language-model ranking. Without the term contribution scoring,

WAND andM AX SCORE enhancements are not possible, and there-
fore every document in the〈sp, ep〉 must be evaluated in order to
guarantee the final top-k ordering. However, this limitation can be
mitigated by usingHSV since we can precalculate the impact con-
tribution for each sample position and store this value instead of
storing only the frequency ordering. Top-k guarantees are also pos-
sible using a term-based self-indexing system where each distinct
term is mapped to an integer usingHSV or other succinct repre-
sentations of term contribution preprocessing. In future work, we
intend to fully examine all of the possibilities for top-k guarantees
using self-indexes in various bag-of-words querying scenarios.

When using character-based self-indexing approaches for bag-
of-words queries, there is another disadvantage worth noting. For
self-indexes, there is an efficiency trade-off between locating the
top-k fd,t values and accurately determiningft since the index can
extract exactlyk fd,t values without processing every document.
For a fixed vocabulary,ft is easily precomputed, and can be stored
in the term map with the〈sp, ep〉 pairs. But, in general it is not
straightforward to determineft for arbitrary strings overWTd with-
out auxiliary algorithms and data structures to support calculating
the value on the fly. TheFM -HSV approach allows us to prestore
ft for each sampled interval which can be be used to calculateft
over 〈sp, ep〉 more efficiently by only processing potential fringe
leaves. Calculatingft using onlyWTd for arbitrary strings in near
constant time using no additional space remains an open problem.

7. EXPERIMENTS
In order to test the efficiency of our approach, two experimental

collections were used. For a small collection, we used theTREC

7 and 8ad hocdatasets. This collection is composed of1.86GB
of newswire data from theFinancial Times, Federal Register, LA
Times, andForeign Broadcast Information Service, and consists of
around528,000 total documents [42]. For a larger in-memory col-
lection, we used theTREC WT10G collection. This collection con-
sists of10.2GB of markup text crawled from the internet, totalling
1,692,096 documents [21].

All of the algorithms described in this paper were implemented
using C/C++ and compiled withgcc 4.6.1 with -O3 optimizations.
For our baselines, we have implemented the in-memory variant of
WAND as described by Fontoura et al. [17] forDAAT , and an in-
memory variant ofM AX SCORE for TAAT . Experiments were run
on a single system with2× Intel Xeon E5640 Processors with a
12MB smart cache,144GB of DDR3 DRAM, and running Ubuntu
Linux 11.10. Times are reported in milliseconds unless otherwise
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Figure 4: Efficiency for 1,000 randomly sampled MSN queries against theTREC 7 & 8 collection.
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Figure 5: Efficiency for 1,000 randomly sampled MSN queries against the theTREC WT10G collection.

noted. All efficiency runs are reported as the mean and medianof
10 consecutive runs of a query, and all necessary information is
preloaded into memory.

Note that we do not carry out an full evaluation of the effective-
ness of the algorithms presented in this paper. In previous work,
we showed that theBM25 ranking and query evaluation framework
used in our approach can be as effective as other state-of-the-art
open source search engines when usingk′ > k, and do not repeat
those experiments here [11]. In these experiments, we use the min-
imum k′ values that result in retrieval performance that is compa-
rable to the effectiveness obtained through exhaustive processing.
In all experiments we usek′ = 8 ∗ k for the TREC 7 & 8 dataset,
andk′ = 2 ∗ k for the TREC WT10G dataset. These values fork′

give results for the MAP and P@10 effectiveness measures that are
not statistically significantly different compared to exhaustive pro-
cessing, for both collections (pairedt-test,p > 0.05). We intend
to pursue additional efficiency and effectiveness trade-offs in future
work.

7.1 Experimental Setup
In order to test the efficiency of our algorithms, queries of vary-

ing length were extracted from a query log supplied by Microsoft.

Each query was tested against bothTRECcollections, and the filter-
ing criteria used was that every word in the query had to appear in at
least10 distinct documents, resulting in a total of656,172 unique
queries for theTREC7 & 8 collection, and a total of793,334 unique
queries for theTREC WT10G collection. From the resulting filtered
query sets, two different query samples were derived.

First, 1000 queries of any length were randomly sampled from
each set, to represent a generic query log run. The1,000 sampled
queries forTREC7 & 8 have an average query length of4.224, and
the average query length of theWT10G sample set is4.265 words
per query. For the second set of experiments,100 queries for each
query length1 to 8 were randomly sampled from the same MSN
query sets. Table 1 shows the statistical properties of the sampled
queries that were used in the second experimental setup, including
the average number of documents returned for each query for each
query length, and the average length of postings lists processed for
each query, computed as(

∑|q|
i=1

ni)/|q|.

7.2 Average Query Efficiency
In order to test the efficiency of our algorithms, two experiments

were performed on each of the collections. The first experiment
is designed to measure the average efficiency for each algorithm,
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given a sampling of normal queries. For this experiment, thelength
of the queries was not bounded during sampling, and had an aver-
age query length of just over4 words per query as mentioned in
Section 7.1.

Figures 4 and 5 show the relative efficiency of each method av-
eraged over1,000 randomly sampled MSN queries forTREC 7 &
8, andTREC WT10G. Each boxplot summarizes the time values as
follows: the solid line indicates the median; the box shows the
25th and75th percentiles; and the whiskers show the range, up
to a maximum of1.5 times the interquartile range, with outliers
beyond this shown as separate points. In both figures, the follow-
ing abbreviations are used for the algorithms:FM -GREEDY (FM),
SEM-GREEDY (SE), FM -HSV (FM -H), SEM-HSV (SE-H), DAAT ,
andTAAT .

We report the timings for all of the self-indexing methods using
the character-basedindexes. We also ran the same experiments
using ourterm-basedindexes, but the performance was identical.
This result is not surprising since the dominant cost in the self-
indexing method is traversing the wavelet tree over the document
array, and is dictated by the depth of the wavelet tree and notthe
overall length. Since the depth depends only on the number of
documents, both approaches consistently produce similar running
times. So, the only efficiency difference between character-based
and term-based indexes is in space-usage which is discussedin Sec-
tion 7.

We see that the self-indexing methods which must calculate all
frequency scores (FM and SE) incur the most overhead ask in-
creases. This is largely due to the multiplicative effect ofcollating
many consecutivek values. For example, when collating frequency
values fromWTd, the number of rank operations is proportional to
the depth of the wavelet tree. In the case of theTREC WT10G col-
lection, which contains around1.6 million documents, the depth
of the wavelet tree is24. So, the number of random rank probes
in wavelet tree begins to significantly degrade the performance for
largerk.

This effect can be marginalized by augmentingWTd with HSV.
Since anHSV style index has a portion of each〈sp, ep〉 ranges,
only the fringe positions for each range need to be calculated at
runtime, reducing the total number of page faults. For allk, the
HSV indexes are efficient and remarkably resilient to outliers.In
general, theWAND variant ofDAAT is more efficient for large val-
ues ofk, but can perform poorly for certain queries. For example,
the query “point out the steps to make the world free

of pollution” on the WT10G collection consistently performed
poorly in ourDAAT framework.

7.3 Efficiency based on Query Length
We now break down the efficiency of each of our algorithms rel-

ative to two parameters:k andq, whereq is the number of terms
in a query. Figure 6 shows the average of10 runs of100 queries
per query length,q. For one-word queries, for all values ofk, the
inverted indexing approachesDAAT andTAAT are superior. This is
not surprising since only a single term posting must be traversed to
calculateBM25, and the algorithms have excellent locality of access.
Still, the HSV variant is the most efficient for smallk.

For |q| > 1, the results also depend onk. For k = 10 and
k = 100, the self-indexing methods are more efficient thanTAAT

since the methods can extract exactlyk values. Since the sample
rates in the lower regions of theHSV methods are close tok, very
little work needs to be done by the indexes. TheWAND-based
DAAT method remains remarkably efficient for all values ofk. As
k increases, the performance of theHSV-based approaches begins
to degrade since the sample size for the precalculated top-k order-
ings grows exponentially. The performance degradation at large
k is equivalent to Case (3) as described in Section 4. In essence,
most of the〈sp, ep〉 ranges turn out to be much smaller than any
of the samples, so the complete〈sp, ep〉 range must be computed
at runtime, reducing the performance toFM -GREEDY when an ap-
propriate sample is not available. Note that the performance of HSV

for TREC 7 & 8 is worse than forWT10G for two reasons. First,k′
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is four times larger inTREC7 & 8 resulting in fewer sample points.
Secondly, if only a partial match is found, the self-index approach
must retrieve8 times more intermediate documents for scoring than
in the inverted indexing approaches.

Note that none of our self-indexing approaches currently employ
M AX SCORE or other methods to guide scoring. In principle our
approach could also benefit from similar enhancements. We intend
to explore the benefits and drawbacks of various early termination
and impact scoring approaches for self-indexes in future work.

7.4 Space Usage
We now address the issue of space usage for the different algo-

rithmic approaches. Inverted indexes are designed to take advan-
tage of a myriad of different compression techniques. As such,
our baselines also support several state-of-the-art byte and word
aligned compression algorithms [3, 9, 28, 39, 43]. So, when we re-
port the space usage for an inverted index, the numbers are reported
using compressed inverted indexes and compressed documentcol-
lections.

Figure 7 presents a break down of space usage for each compo-
nent of the inverted indexing and self-indexing approaches. From
a functionality perspective, there are several different componen-
tization schemes to consider. First, consider the comparison of
an inverted index method (including the term map, the postings
list with p∗ offsets, the document map, and the compressed docu-
ment cache) with an FM-Index (includingWTd, the document map,
and any other precomputed values – for instance theHSV enhance-
ment). We consider these two in-memory indexes as functionally
equivalent, as both can support bag-of-words or phrase queries, and
can recreate snippets or even the original uncompressed document.
The character based variantFM is significantly larger, but able to
support a range of special character and arbitrary substring queries
that term-based indexes do not support. Therefore, the term-based
self-indexing variantFM -TERM is much closer to the inverted in-
dexing variant in space usage and functionality.

The second alternative are indexes that supportonlybag-of-words
queries. Now, an inverted index method requires only the term map,
the postings listwithout p∗ offsets, and the document map. The
character-based self-indexes are essentially the same, but the FM-

Index component is replaced with a term map component. Note
that theFM component ofFM -TERM is only required for phrase
queries, and can also be dropped if only bag-of-words queries are
required. When considering all of the current self-indexing op-
tions presented in this paper, using an FM-Index component instead
of a term map appears to offer the most flexible configuration for
character-based self-indexes, while the term-based variant is com-
petitive in both time, space, and functionality with an inverted in-
dex.

8. CONCLUSION
We have presented an algorithmic framework for in-memory bag-

of-words query processing that is efficient in practice. We have
compared and contrasted our framework with industry and aca-
demic standard inverted indexing algorithms. Our approachshows
great promise for advancing the state-of-the-art in exciting new di-
rections.

However, several challenges must be overcome before these al-
gorithms can reach widespread acceptance. For instance, recent
work has dramatically reduced the space required for self-indexing
algorithms, there are still opportunities to further reduce space us-
age in self-indexes. Another shortcoming of bag-of-words query-
ing with self-indexing algorithms is providing top-k guarantees.
While good solutions exist for providing top-k guarantees on sin-
gleton pattern queries, optimally merging multiple queries remains
problematic.

However, self-indexing algorithms can also efficiently provide
functionality that is notoriously inefficient, and sometimes even im-
possible, using inverted indexes. In addition to basic bag-of-words
queries, our approach has the capability to perform phrase queries
of any length, as well as the ability to support complex statisti-
cal calculations at query time, with no additional indexingcosts.
In fact, phrase queries were shown to be significantly fasterus-
ing FM -GREEDY than when using inverted indexing approaches in
prior work [10]. Self-indexes also inherently preserve term prox-
imity. So, not only can each term be found quickly, but then-
terms surrounding the keyword can quickly be extracted, tabulated,
and used for on-the-fly statistical calculations. Applications of this
functionality include more efficient relevance feedback algorithms,
construction of higher order language models in ranking metrics,
or term dependency extraction and query expansion. In summary,
all of the disadvantages outlined in this paper for self-indexing pa-
per warrant further research, as the potential benefits of this new
approach are compelling indeed.

In future work, we will explore new algorithmic approaches to
reduce space usage, and to further improve efficiency for larger val-
ues ofk. We also intend to investigate the combination of efficient
phrase querying and proximity calculations to produce and evalu-
ate novel ranking metrics. Finally, we will design and evaluate new
approaches to support distributed in-memory query processing in
order to scale our system to terabyte size collections.
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