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ABSTRACT

For over forty years the dominant data structure for rankect d
ument retrieval has been the inverted index. Inverted iesl@te
effective for a variety of document retrieval tasks, andipatarly
efficient for large data collection scenarios that requisk dccess
and storage. However, many efficiency-bound search taskisova
easily be supported entirely in-memory as a result of rebant-
ware advances.

In this paper we present a hybrid algorithmic framework for i
memory bag-of-words ranked document retrieval using aisdtx
derived from the FM-Index, wavelet tree, and the compresa#ik
tree data structures, and evaluate the various algorittrade-offs
for performing efficient queries entirely in-memory. We quame
our approach with two classic approaches to bag-of-woresieg
using inverted indexeserm-at-a-timgTAAT ) anddocument-at-a-
time (DAAT) query processing. We show that our framework is
competitive with state-of-the-art indexing structuresd aescribe
new capabilities provided by our algorithms that can berkayed
by future systems to improve effectiveness and efficiencyfea-
riety of fundamental search operations.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—ndexing method4.3.2 [Information Storage and
Retrieval]: Information Storage-file organization H.3.3 [Inform-
ation Storage and Retrieva]: Information Search and Retrieval—
query formulation, retrieval models, search procelsg.3 [Docu-
ment and Text Processing) Text Processing-iadex generation
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1. INTRODUCTION

Top-k retrieval algorithms are important for a variety of real
world applications, including web search, on-line adwénti, re-
lational databases, and data mining. Efficiently rankingnaers to

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGIR'12,August 12-16, 2012, Portland, Oregon, USA.

Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$15.00.

Matthias Petri
School of CS & IT
RMIT University
Melbourne, VIC, 3001,
) _Australia
shane.culpepper@rmit.edu.au matthias.petri@rmit.edu.au

k Document Retrieval

Falk Scholer
School of CS & IT
RMIT University
Melbourne, VIC, 3001,
Australia
falk.scholer@rmit.edu.au

queries in large data collections continues to challengeaiehers
as the collection sizes grow, and the ranking metrics becoore
intricate. Despite recent hardware advances, inverteekaglre-
main the tool of choice for processing efficiency-bound ge&asks
[17]. However, large memory systems also provide new opport
nities to explore another class of indexing algorithmswaetifrom
the suffix arrayto potentially improve the efficiency of various in-
memory ranked document retrieval tasks [25, 27].

In this paper we present a hybrid algorithmic framework for i
memory bag-of-words ranked document retrieval using aisdkx
derived from the=M-Index wavelet treeand thecompressed suf-
fix tree data structures [12, 20, 27, 22], and evaluate the various
algorithmic trade-offs for performing efficient in-memorgnked
querying. We compare our approach with two classic appesitth
bag-of-words queries using inverted indexesm-at-a-timgTAAT )
and document-at-a-tim¢DAAT) query processing. We show that
our framework is competitive with state-of-the-art indexistruc-
tures, and describe new capabilities provided by our alyms that
can be leveraged by future systems to improve efficiency tiad-e
tiveness for various document retrieval tasks.

Our contributions . Firstly, we propose a hybrid approach to solv-
ing a subset of important top-document retrieval problemsbag-
of-wordsqueries. Secondly, we present a comprehensive efficiency
analysis comparing in-memory inverted indexes with kopelf-
indexing algorithms for bag-of-words queries on text adilens an
order of magnitude larger than any other prior experimesttady.
To our knowledge, this is the first comparison of this new &tbe
mic framework for realistic sized text collections usingtanslard
similarity metric —Bm25. Finally, we describe how our algorithmic
framework can be extended to efficiently and effectivelypsrp
other fundamental document retrieval tasks.

2. PROBLEM OVERVIEW

In this paper, we investigate the use of self-indexing aigors
to solve thetop-k document search problem A document col-
lection7 is a contiguous string drawn from an alphabgtwhere
o = |X| is the number of distinct “terms” or strings. In practice,
can be charactersi{Fg or Ascll), bytes, integers, or even phrases.
Each document i7" is separated by a unique end of document
symbol defined to be lexicographically smaller than ary X.

DEFINITION 1. A top-k document searchtakes a query; €
Y, an integer0 < k < d, and a text] € X partitioned into
d documents 1, D, ..., Dy}, and returns the toge documents
ordered by a similarity measuig(q, D;).

In this work, we focus primarily on bag-of-words queriespsm
baselineS(q, D;) ranking function issm2s. OurS(q, D;) ranking
function has the following formulation:
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Here, N is the number of documents in the collectigh,is the
number of distinct document appearances,of; ; is the number
of occurrences of terrhin documentd, k1 = 1.2, b = 0.75, {4 is
the number of symbols in théth document, and.,., is the average
of ¢, over the whole collection. The free parametersandb can
be tuned for specific collections to improve effectivendnsg, we
use the standard Okapi parameters suggested by Robertabn et
[36].

3. ALGORITHMS

We now present an overview of the key data structures and al-
gorithms used in our framework. Here, we only outline the key
properties and features of wavelet trees and suffix arragd irs
our search engine; for a more in-depth tutorial, see, fomexa
ple Navarro and Mé&kinen [30] and the references thereinciefft
operations in succinct data structures depend on two fuad&h
operations over a bitvect@[0, n — 1]:

RANKo/1(B,i):  Return the number df's/1's in [0, i].
SELECTy1(B,4): Return the position of thé" of 0's/1’s in B.

Both operations can be performed in constant time. A simpte c
stant time RNK /1 solution uses(n) space in addition to storing
B [23]. More space efficient RuK g/1 algorithms are possible [35].

3.1 Wavelet Trees

Efficient RANKs and SELECTs over an alphabet of size > 2
can be performed using a wavelet tree [20]. A wavelet tree de-
composes the R\ks and SLECTs operations ovef0, o — 1] into
RANKq/; and SELECTy; operations on a binary alphabet using
a binary tree. The root of the tree represents the whole alpha
bet. Its children represent each half of the alphabet of e p
ent node. Each leaf node in the tree represents one symbol in
[0, 0 —1]. When answering the RKs query for a specific symbol
s, we perform R\NK g/, operations at each level in the tree until
we arrive at the leaf node representingrhe overall RNKs(7, )
can be computed by combining theaRKk /1 results at each tree
level in O(log o) time. Any symbols = 7Ti] is also computed
in time O(log o) with a similar algorithm; we call this operation
AcCEsSST,4). Using a succinct representation oARK ;1 and
SELECTy1 [35], a wavelet tree requiresH, + o(n log o) bits of
space, wherél, < log o is the zero-order entropy 6f.!

Wavelet trees are a surprisingly versatile data structure have
attractive time and space bounds for many primitive openatin
self-indexing algorithms [14]. As a result, many thpdocument
retrieval approaches rely heavily on wavelet trees. A sufiisien-
portant wavelet tree operations include:

Return the number of occurrences
of symbols in a rangeT [sp, ep).
Return the position of thgth oc-
currence of symbols in a range
T|sp, ep).

Return symbol7 [z].

RANKs(T, s, sp, ep):

SELECTS(T, s, J, Sp, ep):

ACCESST,1):

We assume logarithms are in base 2.

Return the smallest symbalin a
rangeT [sp, ep].

Return theith smallest symbat in
arangeT [sp, ep].

RMQ(T, sp, ep):

RQQ(T, k, sp, ep):

3.2 Self-indexing

A suffix arraysa[0, n— 1] overT stores the offsets to all suffixes
in 7 in lexicographical order. Any pattef of lengthm occurring
in 7 is a prefix of one or more suffixes sn. These suffixes, due
to the lexicographical order withisA, are grouped together in a
rangesA[sp, ep]. To determinesA[sp, ep], we perform two binary
searches ovesA and7 . Each binary search comparison requires
up tom symbol comparisons iff, for a total ofO(m log n) time.
Using additional auxiliary data structures this cost camduiced
to O(m + log n) [25]. Suffix array construction is a well studied
problem, and many solutions with various time and spacecdfs
exist in the literature [34]. However, searching for a patte in
T using only a suffix array requirg®(n logn) bits to store both
T andsa, which in practice is at leasttimes the text size.

By replacing 7 with the Burrows-Wheeler TransfornB¢T)
permuted text, the key operations of a basiccan be emulated
with much less space, close to the sizefofin compressed form.
The Burrows-Wheeler Transform [7] — also known as the block-
sorting transform — produces a permutation of a stfihglenoted
T®"T | by sorting then cyclic rotations ofI” into full lexicographi-
cal order, and taking the last column of the resulting n matrix.
The resulting string™"" tends to be more compressible as sym-
bols are grouped together based on their conteXt,iwhich makes
theBWT an important part in many state of the art compression sys-
tems [26]. To produc&®"" for a given textT, it is not necessary
to constructM as there is a duality betwed?"'" and thesa over
atextT: T®"T[i] = T[sA[i] — 1 modn].

The original text7” can be recovered frof®®"" in linear time
without the need for any additional information. To recoyefrom
only T®"T we first recover the first columnZ', in M by sort-
ing the last columnk = T®"T), in lexicographical order. By
mapping the symbols irl. to their respective positions i’ so
L[i] = F[j] (usually referred to as ther mapping,; = LF(%))
we can recovefl” backwards ag[n — 1] = T®"'[0] = $ and
Tlj — 1] = T®VT[LF(4)] if and only if 7j] = T®""[i]. SinceF
is simply a sort of the: characters of the string in lexicographical
order, it can be represented succinctly as a lookup tablpbébet
characters along with the count of all symbols that appetoree
the current character. The LF mapping is computed using the
equation

LF(i) = LF(i,¢) = C|c] + RANKs(T®"T,4) )
wherec is the symboll"™®""[i], andC|[] stores the number of sym-
bols inT®"T smaller thare.

Performing a search i using theswT permuted text is straight-
forward. Recall that all rows are sorted in lexicographimaler in
M. Therefore, for a patterf®, all occurrences of? in 7 must
have a corresponding row il within a range(sp, ep). To deter-
mine the range withioM, we first determine the randep,,,, ep,,)
within M that corresponds t®,,, usingC[ ]. Then, for each sym-
bolj =m—1...0in P, we iteratively find(sp,, ep; ) by calculat-
ing the number of rows withisp; , ,, ep; |, ) that are preceded by
the symbolP; in 7. For a given rowj, theLF mapping can be used
to determine the row ioM representing the symbol precedipin
T. The preceding row is determined by counting the number of oc
currences of = T®"T[;] beforethe current row and ranking these
occurrences withi'[s]. Assume we have locatédp; , ,,ep; 4 ),



which corresponds to the rows prefixedByj + 1,m]. Then

- 17pj) (2)

will calculate the position irf” of the first occurrence gP; within
(8pj 115 €p;41), and thus compute the start of our range of rows
within M that correspond t® |5, m]. Similarly, we compute

sp; = LF(Spj+1

®)

Once the aredsp, ep) is determined, self-indexes offer a way
to find any occurrence positiosa[j], for sp < j < ep. This
is accomplished by sampling at regular intervals, and marking
positions ofsA that point to sampled text positions in a bitmap
E[0,n — 1]. Sampled suffix array positions are stored in an array
G[RANK1(E, j)] = sA[j] if E[j] = 1. Given a target valusA[j],
the successive valugs= 0, 1, ... are evaluated unti£[LF*(5)] =
1, producing the desired answersf[j] = SA[LF’(j)] +i. If every
xth text position is sampled, we guaraniezan be found for every
0 < ¢ < &, and sampling require®((n/x) logn) extra bits for
G (and for E in compressed form [35]), and computes any entry of
sA within x applications ofF.

Similarly, in order to recover any text substrifigl, » — 1] (in-
cluding the wholeT"), we can use the same sampling of text posi-
tion multiples ofx, and storef [i] = sA™*[i - k]. Thus, we extend
the range tol'[l,7" — 1], for v’ = & - [r/x] and display from
the suffix array position = sa™'[’]. Then, we can display the
area backwards &[], T®WT[LF ()], TV [LF2(5)], . . .. Each
step requires one RIKs and one ACESsoperation, which has
the same cost ass. Therefore, we can display i, » — 1] within
O(r — 1+ k) probes ofLF.

In practice self-indexes can be reduced to a wavelet tree ove
7T with auxiliary information to emulaté” (the C' array) and
the sampling information. This representation of a seteiis re-
ferred to as affM-Index [12, 13]. A wavelet tree built ovef®""
usesnH(T) + o(nlog o) bits [24] for anyk < alog,(n) — 1
and constanty < 1, so the space requirements are reasonable.
Here H(T) < Hp_1(T) < ... < Ho(T) < logo is the
k-th order entropy of/ [26], a measure of the performance of
any compressor usingrth order statistical modeling gii. Many
other self-indexing variations exist with different timgpace trade-
offs [30, 15]. In principle, any of these approaches are atihfe
with the framework we present here, as long as the methothsetu
a (sp, ep) range of matching suffixes.

ep; = LF(ep;1,p5) — 1.

4. TOP-KDOCUMENT RETRIEVAL USING
SELF-INDEXES

In order to efficiently solve théop-k document search prob-
lem, unadorned self-indexing algorithms are not sufficient.oTw
approaches to enhance the self-index have been proposedirsth
is to use adocument arraythat is, a mapping between every suf-
fix in 7 to its corresponding document identifier [10, 18, 27, 41].
The second is to store, in addition to the global self-index self-
index of each individual document in the collection [22,.3ese
alternatives offer different theoretical frameworks thet not di-
rectly comparable, but experimental studies [10, 31] hawesis-
tently shown that the first approach offers better space mne t
performance in practice.

Representing the document array with a single wavelet &ee ¢
provide additional important advantages. For example)ishef
distinct documents where a substrifgappears, with the corre-
sponding term frequencies, can be obtained without anytiadell
structure [18], inO(log d) time per document retrieved, once the
self-index has given the suffix array range7af This information
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Figure 1: Precomputed top+ results over fixed intervals g
stored in a skeleton succinct suffix tree using theisv approach.
Only the fringe leaves are processed for a givefsp, ep) range.

can then be used to calculate simplex1DF basedS(q, D;) met-
rics at query time [37]. In addition, several other operagisuch
as Boolean intersection can be performed efficiently usirlg the
wavelet tree over the document array [19].

Culpepper et al. [10] showed how to use the same waveletdree t
find the topk documents (with raw term frequency weights) for a
stringP. Among all of the strategies proposed, the heuristic algo-
rithm GREEDY worked best in practice. Despite the lack of worst-
case theoretical guarantees, they show unadorned waresstare
efficient in time and space for this task. Hon et al. [22] pnése
a technique with worst-case performance guaranteesHShep-
proach builds on the same document listing strategy ofligipeo-
posed by Sadakane [37]. Whitesv was originally described us-
ing individual self-indexes for each document as in Sadekaap-
proach [37], the method can be applied on top of either doatime
listing solution in practice. The key insight of tlkesv method is
to precompute the top-results for the lowest suffix tree nodes in
a predetermined sampling range. Figure 1 showswa tree over
D. In this example, dsp’, ep’) range of sizey is precalculated
and stored in a succinct suffix tree. An arbitrary quésy, ep) is
received. The bulk of the query result is already precontghatke
(sp’,ep’). The remainder of the query can then be processed us-
ing RQQ queries over théringe ranges to generate the final tép-
counts.

Usingg samples guarantees that any suffix array intefsalep)
for a givenP falls into one of three categories: (1) The range is
completely covered by the sampled interval, and thek@mswer
is precomputed; (2) The range is partially covered, and at gp
fringe leaves must to be processed at query time and merghd wi
the sample; or (3) The range is too small to be covered. Foe Cas
(3), the completésp, ep) range must be processed at runtime, but
is guaranteed to be smaller than

Navarro and Valenzuela [31] demonstrated that implemgntin
HSV over a document array, and using theEeDY approach of
Culpepper et al. [10] to speed up document listing, is more ef
ficient than using eitheGREEDY or HSV in isolation. The hy-
brid approach requires additional space to suppsi on top of
GREEDY, but efficiency is significantly improved by limiting the
number of rank queries required at query time. This appr@ach
well as other trade-offs are explored more fully in this pape
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Figure 2: The three fundamental components of an inverted idex. Each term in the vocabulary is mapped to a posting list ofd, fa.+)
tuples. For each tuple, the position offsetg™ are also stored to support phrase or term proximity queries.

5. INVERTED INDEXES

Traditional approaches to thep-k document search problem
rely oninverted indexeslnverted indexes have been the dominant
data structure for a variety of ranked document retrievgitgeor
more than four decades [44]. Despite various attempts fuatie
inverted indexes from their dominant position for documemtk-
ing tasks over the years, no alternative has been able téstemity
produce the same level of efficiency, effectiveness, aned tispace
trade-offs that inverted indexes can provide (see, foaimst Zobel
et al. [45]).

Figure 2 shows a typical inverted indexing system. The syste
contains three key components: (I§rm Map- The vocabulary
of terms, along with the number of documents containing ane o
more occurrence of the terny:), the number of occurrences of
the term in the collectionH}), and a pointer to the corresponding
posting list. (2)Posting Lists- An ordered list of tuples(d, fa,:),
containing the document identifier and the frequency of émmnt
in documentd. For each tuple, the ordered position offsetsare
also maintained in order to support phrase queries. Fowxé@sle
that do not require phase querigs,can be omitted. (3pocument
Storage- A document map to matct to the document name, and
a pointer to the document in a document cache.

Ranked document retrieval requires that only the kogecu-
ments are returned, and, as a result, researchers havesedopo
many heuristic approaches to improve fogfficiency [1, 4, 5,

6, 32, 38]. These approaches can be classified in two geraral ¢
egories: term-at-a-time(TAAT ) and document-at-a-tim¢DAAT).
Each of these approaches have various advantages andatisadv
tages.

5.1 Term-at-a-Time Processingaar)

For TAAT processing, a fixed number of accumulators are allo-
cated, and the rank contribution incrementally calculdtedeach
query term in increasing document order. When inverted éites
stored on disk, the advantages of this method are clear. Fhe i
verted file for each term can be read into memory, and prodesse
sequentially. However, wheh is small relative to the total num-
ber of matching documents in collectiomAT can be inefficient,
particularly when the number of terms in the query increasiese
all of the inverted lists must be processed before knowiegfii
rank score of each document. In early work, Buckley and LE&gjit
proposed using a heap of sikeo allow posting lists to be evalu-
ated inTAAT order. Processing is terminated when the sum of the
contributions of the remaining lists cannot displace thaimum
score in the heap.

Moffat and Zobel [29] improved on this pruning approach with
two heuristics:sTOP andCONTINUE. TheSTOP strategy is some-
what similar to the method of Buckley and Lewit, but the tears
processed in order of document frequency from least fregieen
most frequent. When the threshold Jofaccumulators is reached,
processing stops. In contrast, theNTINUE method allows the
current accumulators to be updated, but new accumulatorsota
be added. These accumulator pruning strategies only aippaite
the true topk result list.

If approximate results are acceptable, thaT approach can be
made even more efficient usiimgpact ordering[1, 2, 33]. The key
idea of impact ordering is to precompute trrefor each document
a term appears in. Next, quantize the values into a variable
number of buckets, and sort the buckets (or blocks) for each t
in decreasing impact order. Now, the tbpepresentative can be
generated by sequentially processing each of the higheking
term contribution blocks until a termination threshold éached.
The authors refer to this blockwise processing methodcase-
at-a-timeprocessing. Despite not using the fo# contribution for
each term, Anh and Moffat [1] demonstrate that the effeatas of
impact ordered indexes is not significantly reduced, butiefiicy
is dramatically improved.

5.2 Document-at-a-Time Processinggar)

The alternative approach is to process all of the terms samul
neously, one document at a time [8]. The advantage of this ap-
proach is that the final rank score is known as each document is
processed, so it is relatively easy to maintain a heap auntpex-
actly k scores. The disadvantage is that all of the term postirg list
are cycled through for each iteration of the algorithm reqginon-
sequential disk reads for multi-word queries. However, foaus
in this paper isn-memoryranked retrieval, SOAAT tends to work
very well in practice.

Pruning strategies to further increase efficiency alsot dris
DAAT processing. The most widely used pruning strategyfoxt
is MAXSCORE. Turtle and Flood [40] observed that thei2s TF
component can never excekd+ 1 = 2.2. So, the total score con-
tribution for any term is at mos2.2 - log(N/N;). Using this ob-
servation, Turtle and Flood present an algorithm that alpast-
ing values below the threshold to be skipped. As the minimum
bounding score in the heap slowly increases, more and mate po
ings can be omitted. EnhancedAT pruning strategies similar
in spirit to M AX SCORE have been shown to further increase effi-
ciency [4, 38].
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Turtle and Flood also describe a similar approach to improve 9: UPDATE(R, A;[j], score
the efficiency of TAAT strategies. However, theaAT variant is 10: else
more complex than theAAT approach as it requires an ordered 11: ADD(R, A;[j], score
candidate list ok documents to be maintained. The candidate list 12: end if

is used to skip document postings in each term list whichccoul 13: end for
not possibly displace the current tépeocuments once the heap 14: end for
containsk items. 15: return R[1... k]

Fontoura et al. [17] compare sever@AT andDAAT based in- FUNCTION GREEDY (sp, ep, k)
memory inverted indexing strategies. The authors preseviln
adaptations oM Ax SCORE and WAND [4] to significantly im-
prove query efficiency of in-memory inverted indexes. Thinars
go on to show further efficiency gains DwAT style processing
by splitting query terms into two groups: rare terms and camm
terms. The exact splitis based on a fixed threshold selettpobay
time. For our baselines, we ugéaND for DAAT query processing,
andM AX SCORE for TAAT query processing.

{ < WT4.root
: A max-heap, sorted byp — sp, h < PUSH(!, [sp, ep])
: A priority queuePQ+ {}.
T+ 0
while h # @ and: < k do

L, [sp’,ep’] + POP(h)

if Zis leafthen

PQ < ENQUEUE(4.docid, ep” — sp’ + 1)

COXNDURWNE

11+ 1

6. SELF-INDEXING APPROACHES else

We now describe our general approach to in-memory indexing 11 [s0, eo] = [RANKo (B, Spi)’ RANK o (By, epi)]
and retrieval. Figure 3 shows the key components of ourexeiti 2: [s1, 1] < [RANK1(By, 5p'), RANK1 (B, ep')]
system: an FM-Index and the document array wavelet tree, 13: if eo —s0 > 0 thenh « PUsH(L.left, [so, eo])
In addition, our system requires@ocument Magto map docu- 14 end if ,
ment identifiers to human readable document names (or URls). 2 if e1 — 51> 0thenh < PUSH(Lright, [s1, e1])
document cache is required and the original documents ppsts 16: end if
around each match can be recreated directly from the FMxInde 17 end,'f
by extracting the required text positions using the suffrasam- 18: end while

pling. Only the items in grey are stored and used for characte 19 réturn PQ
based topt document retrieval. All other components are shown
for illustration purposes only. A simple bag-of-words search using a self-index retrieystem
is outlined in AlgorithmGREEDY-TAAT. Recall that thep andep
range for any string can be found using a backwards seardtein t

ALGORITHM GREEDY-TAAT BWT permuted text using only a wavelet tree o™ and C.
So, the(sp, ep) for each query term in Line (3) can be calculated in
INPUT A sorted listt of ¢ terms. O(t:| log o) time using an FM-Index. Now, a wavelet tree over the
OUTPUT A list of k& documents in rank order. document array T, can be used to retrieve exackthdocuments in

frequency order for each term USIGIREEDY Or QUANTILE [10].
This algorithm is analogous toAAT processing, and is referred
to asGREEDY-TAAT. Note that FunctiorsREEDY can also be
augmented witlHsv as described in Section 4 to further increase
the efficiency of constructingl; for each query term.

We also present several variations on this general strafegy,
we consider the addition ofsv style precomputations ovevT,
as described by Navarro and Valenzuela [31]. Instead afhgtdine
top-k most frequent symbols in the skeleton suffix tree, we store

1: Initialize a max-hea® «+ {}
2: for i+ 1togdo
3: Determine(sp, ep) for termt;
4: A, < GREEDY(sp,ep, k')
5: end for

6: for i + 1togdo

7 for j < 1to k' do

8 if A;[j] € Rthen



Query length TREC7 & 8 queries

TRECWT10G queries

Total Matches Average; Total Matches Average;
lq| Queries  ('000) ('000) Queries  ('000) ('000)
1 100 9.9 9.9 100 3.3 4.7
2 100 24.8 12.5 100 68.6 42.5
3 100 104.5 38.5 100 292.8 123.2
4 100 238.1 69.0 100 601.1 166.6
5 100 351.2 95.1 100 866.5 228.5
6 100 408.7 107.8 100 1041.9 280.4
7 100 463.8 126.2 100 1149.7 319.6
8 100 489.8 148.3 100 1171.8 339.2

random sample 800 234.9 70.0 800 621.5 181.2

Table 1: Statistics of the queries used in experiments (sangd based on query length, or sampled from the filtered MSN quey log),
reporting the number of queries run, the mean number of docunents that contained one or more of the query terms, and the mea

length of the inverted lists processed.

the top4 most important symbols sorted by term impact for each WAND andM AX SCORE enhancements are not possible, and there-

interval g to improve effectiveness. In order to capture/alues
commonly used in IR system& (= 10, 100, 1000), we prestore
values of anyk that is a power o2 up t08192 in term contribution
order. Note that we go higher than24 since the values df’ nec-

essary to ensure good effectiveness can be greater thardinedd
k.

Observe that in typical bag-of-words query processing &rer
glish text, the size of the vocabulary is often small relatio the
total size of the collection. As such, we also present a newidy
approach to topge bag-of-words retrieval using &rm Mapand
WT,. If we assume the vocabulary is fixed for each collectiom the

fore every document in thésp, ep) must be evaluated in order to
guarantee the final top-ordering. However, this limitation can be
mitigated by usingHsV since we can precalculate the impact con-
tribution for each sample position and store this valueeiagdtof
storing only the frequency ordering. Tdpguarantees are also pos-
sible using a term-based self-indexing system where eastimcti
term is mapped to an integer usimgV or other succinct repre-
sentations of term contribution preprocessing. In futuoekywe
intend to fully examine all of the possibilities for tdpguarantees
using self-indexes in various bag-of-words querying stesa
When using character-based self-indexing approachesafpr b

the (sp, ep) range for each term can be precalculated and retrieved of-words queries, there is another disadvantage wortmgotor

using a term map, as in the inverted indexing solution. Tréamns
that the FM-Index component is no longer necessary wherepsac
ing bag-of-words queries. We refer to these hybrid apprescs
SEM-GREEDY and SEM-HSV. These methods reduce the overall
space requirements of our approach, but also limit the fuic#
tionality of some auxiliary operations. For example, the t&an no
longer be reproduced directly from the index, so snippetsca
be generated on the fly, and phrase queries are no longeelgativ
supported. However, for classic bag-of-words queries,hytorid
approach provides an interesting trade-off to considerr fibal
variation is to support a term-based self-index. We refethts
approach asM-TERM.

Itis also possible to supportaAT query processing strategy in
our retrieval system, but this would require efficiently saging

self-indexes, there is an efficiency trade-off betweentlogathe
top-k fa,: values and accurately determinifigsince the index can
extract exactlyk fq: values without processing every document.
For a fixed vocabularyf; is easily precomputed, and can be stored
in the term map with thésp, ep) pairs. But, in general it is not
straightforward to determing for arbitrary strings ovewT, with-

out auxiliary algorithms and data structures to supportidating
the value on the fly. Them-HsVv approach allows us to prestore
ft for each sampled interval which can be be used to calciflate
over (sp, ep) more efficiently by only processing potential fringe
leaves. Calculating: using onlywT, for arbitrary strings in near
constant time using no additional space remains an opemgpnob

7. EXPERIMENTS

RMQ over the document array. Our approach currently supports a

generalization o0RMQ —RQQ. But, the cost o0RQQis O(log d) per

k value extracted, while constant time solutions&aQ currently
exist [16]. However, amMQ style approach as presented by Fis-
cher and Heun [16] incurs an additior?al bits of space, and so we
do not explore the possibility further in this work.

Also note the current tog- bag-of-words approach shown in
GREEDY-TAAT is based entirely on the frequency counts of each
item. This means that our current implementation only axpro
mates the togk items. This is a well-known problem in the inverted
indexing domain. This limitation holds for any charactased
bag-of-words self-indexing system that does frequencytiog at
query time since we can not guarantee that item 1 in any of
the term lists does not have a higher score contribution #mgn
item currently in the toge intermediate list. A method of term
contribution precalculation is required in order to supors or
language-model ranking. Without the term contributionrsap

In order to test the efficiency of our approach, two experitalen
collections were used. For a small collection, we usedTthec
7 and 8ad hocdatasets. This collection is composedldf6 GB
of newswire data from th€inancial Times Federal RegisterLA
Times andForeign Broadcast Information Servicand consists of
around528,000 total documents [42]. For a larger in-memory col-
lection, we used th&REC wT10G collection. This collection con-
sists 0f10.2 GB of markup text crawled from the internet, totalling
1,692,096 documents [21].

All of the algorithms described in this paper were impleneeint
using C/C++ and compiled witficc 4.6.1 with -O3 optimizations.
For our baselines, we have implemented the in-memory \aoian
WAND as described by Fontoura et al. [17] l@AAT, and an in-
memory variant oM AX SCORE for TAAT. Experiments were run
on a single system witBx Intel Xeon E5640 Processors with a
12 MB smart cachel 44 GB of DDR3 DRAM, and running Ubuntu
Linux 11.10. Times are reported in milliseconds unless rotise
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Figure 4: Efficiency for 1,000 randomly sampled MSN queries gainst theTREC 7 & 8 collection.
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Figure 5: Efficiency for 1,000 randomly sampled MSN queries gainst the theTREC wT106G collection.

noted. All efficiency runs are reported as the mean and mexfian
10 consecutive runs of a query, and all necessary informason i
preloaded into memory.

Note that we do not carry out an full evaluation of the effesti
ness of the algorithms presented in this paper. In previcark,w
we showed that themzs ranking and query evaluation framework
used in our approach can be as effective as other stateeafrth
open source search engines when uging- k, and do not repeat
those experiments here [11]. In these experiments, we egaiti
imum £’ values that result in retrieval performance that is compa-
rable to the effectiveness obtained through exhaustiveggsing.

In all experiments we usk’ = 8 * k for the TREC 7 & 8 dataset,
andk’ = 2 x k for the TRECwT10G dataset. These values fbf
give results for the MAP and P@10 effectiveness measuresaitba
not statistically significantly different compared to embtve pro-
cessing, for both collections (paireegest,p > 0.05). We intend
to pursue additional efficiency and effectiveness tradeinffuture
work.

7.1 Experimental Setup

In order to test the efficiency of our algorithms, queries arfyv
ing length were extracted from a query log supplied by Miofbs

Each query was tested against boHEC collections, and the filter-
ing criteria used was that every word in the query had to apiped
least10 distinct documents, resulting in a total @56,172 unique
queries for theREC7 & 8 collection, and a total f93,334 unique
queries for therREC wT10G collection. From the resulting filtered
query sets, two different query samples were derived.

First, 1000 queries of any length were randomly sampled from
each set, to represent a generic query log run. ITh@0 sampled
queries forTREC 7 & 8 have an average query lengthdo224, and
the average query length of therioc sample set ig.265 words
per query. For the second set of experimeh®, queries for each
query lengthl to 8 were randomly sampled from the same MSN
query sets. Table 1 shows the statistical properties ofahgpked
queries that were used in the second experimental setupding
the average number of documents returned for each quenaéor e
query length, and the average length of postings lists gemzkfor
each query, computed az‘zq‘l ni)/|ql.

7.2 Average Query Efficiency

In order to test the efficiency of our algorithms, two expents
were performed on each of the collections. The first experime
is designed to measure the average efficiency for each digori
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given a sampling of normal queries. For this experimentle¢hgth This effect can be marginalized by augmenting, with HSV.
of the queries was not bounded during sampling, and had an ave Since anHsV style index has a portion of eadkp, ep) ranges,
age query length of just over words per query as mentioned in  only the fringe positions for each range need to be calculated at

Section 7.1. runtime, reducing the total number of page faults. Forkalthe
Figures 4 and 5 show the relative efficiency of each method av- Hsv indexes are efficient and remarkably resilient to outlidrs.
eraged ovet,000 randomly sampled MSN queries fOREC7 & general, theVAND variant of DAAT is more efficient for large val-

8, andTREC wT10G. Each boxplot summarizes the time values as ues ofk, but can perform poorly for certain queries. For example,
follows: the solid line indicates the median; the box sholws t  the query point out the steps to make the world free
25th and 75th percentiles; and the whiskers show the range, up of pollution” on the wt10G collection consistently performed
to a maximum ofl.5 times the interquartile range, with outliers  poorly in ourbAAT framework.

beyond this shown as separate points. In both figures, thenfol

ing abbreviations are used for the algorithrAst-GREEDY (FM), 7.3 Efﬁciency based on Query Length

SEM-GREEDY (SE), FM-HSV (FM-H), SEM-HSV (SE-H), DAAT , - .
(S8 ( ) ( ) We now break down the efficiency of each of our algorithms rel-

andTAAT . ative to two parameters: and heregq is the number of terms
We report the timings for all of the self-indexing method@gs ativ P a W q! u h
in a query. Figure 6 shows the averagel6fruns of 100 queries

the character-basedndexes. We also ran the same experiments er query lengthg. For one-word queries, for all values bf the
using ourterm-basedndexes, but the performance was identical. per query fengthg. q ’ - L
inverted indexing approach@AT andTAAT are superior. This is

This result is not surprising since the dominant cost in thié s - . i .
P g not surprising since only a single term posting must be ts®aeto

Indexing method is traversing the wavelet tree over the calculateamzs, and the algorithms have excellent locality of access
array, and is dictated by the depth of the wavelet tree andheot . »andthe alg . y )
Still, the HsV variant is the most efficient for smail

overall length. Since the depth depends only on the number of B

documents, both approaches consistently produce sinoitenimg i EO; (|)%| tie 1S'et|??n(;i§(l{lrl1ts r?}';‘g}gggz?g rﬁ?)rng;fi]f: ie_nt ﬁa;qd

times. So, the only efficiency difference between charduased s ' - 9 .

and term-based indexes is in space-usage which is discirsSed- since the methods can extract exadtlyalues. Since the sample
rates in the lower regions of thesv methods are close o, very

tion 7. . .
We see that the self-indexing methods which must calculate a :;t;IiTWn(z:akthr:)%erdesmtg'nbserg;r;?kg)kl)ltheeff'lg'((jei)t(efcs).r a-lll‘hzl'\l 2;23;\?
frequency scoresF(1 and SE) incur the most overhead a&sin- ) : y €tlict vaiu .
k increases, the performance of thev-based approaches begins

creases. This is largely due to the multiplicative effectafating . .
many consecutivé values. For example, when collating frequency .to degrade since the §amp|e size for the precalculateﬁ.mner-
ings grows exponentially. The performance degradatiorarafel

values fromwT,, the number of rank operations is proportional to - . - ) -
& P prop k is equivalent to Case (3) as described in Section 4. In essenc

the depth of the wavelet tree. In the case of ti&c wT10G col-

lection, which contains arountl6 million documents, the depth most of the(sp, ep) ranges tum out to be much smaller than any
of the wavelet tree i24. So, the number of random rank probes ZI :Bﬁtfn?zpgj&;ﬁ;?ﬁ;gg?;ﬁ’&m _ngsErzgitvl\jﬁeCnO;nnp;id
in wavelet tree begins to significantly degrade the perfowador propriate sample is not available. Note that the perforraafie sv

largerk. . .
9 for TREC7 & 8 is worse than fowT10G for two reasons. First’



trec=748 wiiog Index component is replaced with a term map component. Note
that theFm component offM-TERM is only required for phrase
queries, and can also be dropped if only bag-of-words gsierie
required. When considering all of the current self-indgxop-
tions presented in this paper, using an FM-Index compomestead

of a term map appears to offer the most flexible configuratan f
character-based self-indexes, while the term-basedntas@om-
petitive in both time, space, and functionality with an irteel in-

dex.
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8. CONCLUSION

We have presented an algorithmic framework for in-memogy ba
of-words query processing that is efficient in practice. Vsgeh
compared and contrasted our framework with industry and aca
demic standard inverted indexing algorithms. Our apprcddws
great promise for advancing the state-of-the-art in exgitiew di-
Figure 7: Space usage for each component in the three indexgn rections.

approaches presented in this paper for therREC 7 & 8 collec- However, several challenges must be overcome before these a
tion (left) and the TREC wT10G collection (right). The dashed gorithms can reach widespread acceptance. For instarmntre
line in both graphs represents the total space usage of theigr work has dramatically reduced the space required for aeixing

inal uncompressed text for the collection. algorithms, there are still opportunities to further reglspace us-

age in self-indexes. Another shortcoming of bag-of-wordsry-

ing with self-indexing algorithms is providing tap-guarantees.
) ) ) o ] While good solutions exist for providing top-guarantees on sin-
is four times larger iMREC7 & 8 resulting in fewer sample points. gleton pattern queries, optimally merging multiple queriemains

Secondly, if only a partial match is found, the self-indeymach problematic.

must retrieved times more intermediate documents for scoring than However, self-indexing algorithms can also efficiently yide

in the inverted indexing approaches. functionality that is notoriously inefficient, and somegigeven im-
Note that none of our self-indexing approaches currentigleyn possible, using inverted indexes. In addition to basic Giagords

M AX SCORE or other meth.ods to guifje scoring. In principle.our queries, our approach has the capability to perform phraseges
approach could also benefit from similar enhancements. Wadn ot any length, as well as the ability to support complex stati

to explore the benefits and drawbacks of various early textioin cal calculations at query time, with no additional indeximsts.
and impact scoring approaches for self-indexes in futunkwo In fact, phrase queries were shown to be significantly fasser
7.4 Space Usage ing FM-GREEDY than when using inverted indexing approaches in

. . prior work [10]. Self-indexes also inherently preservartgrox-
We now address the issue of space usage for the different algo imity. So, not only can each term be found quickly, but the

rithmic approaches. Inverted indexes are designed to t@ana terms surrounding the keyword can quickly be extractedsl&ed,
tage of a myriad of different compression techniques. Aisuc 51 ysed for on-the-fly statistical calculations. Applizas of this

our baselines also support several state-of-the-art bydeward functionality include more efficient relevance feedbadoaithms,
aligned compression algorithms (3, 9, 28, 39, 43]. So, whemew construction of higher order language models in rankingriesst
port the space usage for an inverted index, the numberspgoeed or term dependency extraction and query expansion. In suypma
using compressed inverted indexes and compressed docaolent o) of the disadvantages outlined in this paper for seleiidg pa-
lections. per warrant further research, as the potential benefitsisfrigaw

Figure 7 presents a break down of space usage for each COMPOypproach are compelling indeed.
nent of the inverted indexing and self-indexing approactiesm In future work, we will explore new algorithmic approaches t
gfunctionality perspectivg, there.are several diﬁerMpongn- reduce space usage, and to further improve efficiency foetasl-
tization schemes to consider. First, consider the compared 65 of%. We also intend to investigate the combination of efficient
an inverted index method (including the term map, the pgstin phrase querying and proximity calculations to produce adie
list with p™ offsets, the document map, and the compressed docu- ate novel ranking metrics. Finally, we will design and eaéunew

ment cache) with an FM-Index (includingT,, the document map, approaches to support distributed in-memory query praogss
and any other precomputed values — for instanceitheenhance- order to scale our system to terabyte size collections.

ment). We consider these two in-memory indexes as fundtjona
equivalent, as both can support bag-of-words or phrasésg,and
can recreate snippets or even the original uncompressenio. 9. ACKNOWLEDGMENTS
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