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ABSTRACT
Fieldsareavaluableauxiliarysourceof information insemi-structured
HTMLweb documents. So, it is no surprise that rankingmodels have
been designed to leverage this information to improve search effec-
tiveness.We present the first (initial) study of utilizing field-based in-
formation in the relevance modeling framework. Fields play two dif-
ferent, and integrated, roles in ourmodels: sources of information for
inducing relevance models and units on which relevance models are
applied for ranking. Our preliminary results suggest that field-based
relevance modeling can improve precision at top ranks; specifically,
to a greater extent than the commonly used BM25F and SDM-Fields
field-based models. Further analysis shows that using field-based
relevance models mainly improves the effectiveness of tail queries.
Our findings suggest that using field-based information together
with relevance modeling is a promising area of future exploration.
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1 INTRODUCTION
The match between a query and document fields — e.g. title,
heading, and inlink which are derived from HTML and SGML
markups — is often assumed to be a strong relevance signal. Indeed,
commonly used Web retrieval methods such as BM25F [13] and
SDMF [7] outperform their non-field counterparts.

Existingfield-based retrievalmethods aremainlybasedon surface-
level field-query comparisons [7, 13]. However, short fields (e.g.,
titles) of relevant documents are prone to increased vocabulary
mismatch with the query. One of the most fundamental and prin-
cipled paradigms to addressing the vocabulary mismatch problem
for whole documents is relevance modeling [5]: terms in the query
and in relevant documents are assumed to be generated by a latent
relevance language model. A relevance model is usually induced
from pseudo relevant documents — i.e., those most highly ranked
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by initial search. The comparison between the relevance model and
document language models serves for ranking.
Past work on relevance modeling has focused on unstructured

text. We present a study of using field-based information in the
relevance-modeling framework. Our first method induces relevance
models from fields independently and then linearly combines them
to create a weightedmodel. The secondmethod is based on inducing
a relevance model from the entire document and using it to score
fields. Hence, fields are used in two (integrated) capacities: sources
of information for inducing relevance models and units scored by
using relevance models.
Another important aspect of our work is a comprehensive fail-

ure analysis of field-based retrieval performance when applying
relevance modeling. While past work has demonstrated the aver-
age effectiveness of field-based methods, failure analyses are rare.
These are important for shedding light on potential avenues for
performance improvement.

Experiments performedusingTREC’sClueWeb09 collection show
that while common field-based ranking models improve early pre-
cision effectiveness, using field-based information with relevance
models can further improve it; specifically, with respect to using
relevance modeling with whole documents as is the standard. Our
failure analysis shows that field-based relevance modeling is mainly
effective for tail queries. We also show that using field-based infor-
mation, with or without relevance modeling, has mixed effects in
terms of mean average precision (MAP).

2 RELATEDWORK
Our focus is on integrating field-based information and relevance
modeling. Thus, we briefly review commonly used field-based re-
trieval methods and relevance modeling for whole documents [5].
BM25F. BM25F extends BM25 [10] by incorporating field informa-
tion directly into the ranking function. Robertson et al. [11] proposed
to boost the weights of terms that also appeared in fields. Zaragoza
et al. [13] combined the normalized weighted term frequency to
produce the BM25F document scoring function.
SDMF. SDM Fields is another state-of-the-art retrieval technique for
Web data which has been shown to work well on the ClueWeb09B
collection [3, 6]. The model extends SDM [6] to fields. The unigram,
unordered bigram, and ordered bigram are scored on fields respec-
tively and combined. In practice, the unordered bigram and ordered
bigrammodels are only applied on the body field.



Field-based LanguageModels. Ogilvie and Callan [9] used fields
as document representations in the query likelihood model:

P(q |d)=
Ö
t ∈q

Õ
f

Wf P(t | f ,d); (1)

P(q |d) is the probability of generatingq’s terms by a languagemodel
induced fromdocumentd ;P(t | f ,d) is theprobabilityassigned to term
t by a language model induced from field f in d ;Wf is f ’s weight.

Kim and Croft [4], as us, used relevance models induced from
fields. However, a significant fundamental difference with our work
is that the relevance models were not used to directly score fields
or the entire document as implied by the generative theory for rel-
evance. Rather, the relevance models were used to assign a weight
Wf ,t for each field f with respect to each query term t (∈q). These
weights were then used in the query-likelihood retrieval model from
Equation 1 insteadofWf which is the sameweight for all query terms
with respect to f . Specifically,Wf ,t is the normalized probability
assigned to term t by a relevance language model induced from field
f of top-retrieved documents; normalization is with respect to all
fields. Thus, the suggested retrieval model is still based on scoring
a query w.r.t. a field using the surface-level similarity between the
two. In contrast, ourmodels try to alleviate the vocabularymismatch
problem incurred by such scoring by using relevancemodels to score
the fields. We note that using relevance-model-based field weights
in our models is an interesting avenue for future work.
Zamani et al. [12] explored incorporating document fields into

neural ranking models. They usen-grams to represent field informa-
tion, build neural models for each field and then ensemble all of the
models to obtain the final ranking.
As already noted, relevance models are usually induced using

pseudo feedback. Specifically, letDQL be the list of the k documents
most highly ranked by the query likelihood model. Then, relevance
model #1 (RM1) is estimated as:

P(t |RM1)=
Õ

d ∈DQL

P(t |d)P(d |q); (2)

t is a term; P(t |d) is the probability assigned to t by a languagemodel
induced fromdocumentd ;P(d |q) isd’s normalized (overDQL ) query
likelihood. To alleviate query drift, RM1 is anchored to the original
query using a free parameter λ, yielding RM3 [1]:

P(t |RM3)=λP(t |q)+(1−λ)P(t |RM1). (3)

3 OURAPPROACH
In this section, we present our methods that integrate field-based
information and relevance modeling. The first method induces rel-
evance models from fields and scores the fields independently. The
second method scores fields using a relevance model induced from
the entire document.

3.1 RelevanceModeling Using Fields
We induce relevance model #3 (cf., Equation 3) from each field f
independently:

P(t | f ,RM3)=λp(t |q)+(1−λ)
Õ

d ∈DQL

P(t | f ,d) P(q | f ,d)Í
d ′ ∈DQLP(q | f ,d ′)

(4)
where P(t | f ,d), the probability assigned to term t by a language
model induced from field f in documentd , is estimated as explained
below, and P(q | f ,d)=Ît ∈qP(t | f ,d).

To estimate P(t | f ,d), we should account for the fact that fields are
short, and hence, the sparsity problem is exacerbated. For example,
the title and heading fields are usually much shorter than the
document body. For part B of TREC’s ClueWeb09 collection, the
average length of title, heading, and body are 7.22, 27.94, and
702.19 termsrespectively.Thus,weuseadoublesmoothingapproach,
where themaximum likelihood estimate (MLE)with respect to afield
is Dirichlet smoothed with a linear combination (Jelinek-Mercer) of
field-specific and non-field-specific collection MLEs:

P(t | f ,d)=
ct,f ,d +µ(β

ct, f
|Cf | +(1−β)

ct
|C | )

|df |+µ
; (5)

ct,f ,d , ct,f and ct are the counts of t in field f of d , in all fields f in
the corpus documents, and in all fields in the corpus;df is the length
of f in d ; |Cf | is the sum of lengths of fields f in all documents; and,
|C | is the number of term occurrences in the corpus; β and µ are free
parameters.
To score document d with respect to query q, we interpolate the

minus cross entropy scores of applying the field-based relevance
models from Equation 4 independently on each field:

S(d,q)=
Õ
f

Wf

Õ
t ∈q

P(t | f ,RM3)logP(t | f ,d). (6)

The field weights,Wf , are set using cross-validation.

3.2 Scoring FieldsWith RM
The method presented above is based on scoring a field using a rel-
evance model induced from the field. Still, fields are short and hence,
the induced relevance models might not be robust. Hence, we con-
sider amethodwhich uses a relevancemodel induced from the entire
document (P(·|RM3) from Equation 3) to score each of the document
fields. Then, as in Equation 6, the scores are linearly interpolated:

S(d,q)=
Õ
f

Wf

Õ
t ∈q

P(t |RM3)logP(t | f ,d). (7)

4 EXPERIMENTS
CollectionsandFields. Our experiments are ranon theClueWeb09
Category B collection which contains around 50 million English
web pages. We use Indri1 5.12 for indexing, and apply the Krovetz
stemmer to both documents and queries. Note that stopwords2 are
removed from the query only as stopwords in the documents can
have an important influence on the relevance models being induced.
We investigated three fields – title, heading and body. Al-

though inlink is a field commonly used in other studies, we omit
results for inlink, as our preliminary results show that including
inlink data in the collection can have unexpected consequences.
More specifically, Indri and several other systems append inlink
data from other documents into the linked document, which can
change the statistical properties of a document with many inlinks
significantly. Our experiments show that this destabilizes the rele-
vance models being induced. We leave this unexpected finding to
future work as it is an orthogonal problem to the one we wish to
explore in this paper. Note that, in our experiments, heading is part
of body as it is an aggregation of the H1, H2, H3 and H4HTML tags

1https://www.lemurproject.org/indri.php
2http://www.lemurproject.org/stopwords/stoplist.dft



which are inside thebody tag.We believe itmight also contain useful
information that can be exploited independently of the body.
RetrievalMethods.Weused three types of existing retrieval frame-
works as baselines: (1) query likelihood (QL) and a weighted linear
combination of query likelihood over fields (QLLF); see Eq. 1 (ii)
BM25 and BM25F; and (iii) SDM and SDMF. For QL, the Dirichlet
smoothing parameter µ is set to 2500. For QLLF, µ is 10, 100, 2500
for title, heading, and body and the field weights are 0.2, 0.1, 0.7
respectively.We implementedBM25F [13] (Section 4.1 of the original
paper) in Indri, and followed their approach to optimize the parame-
ter weights for {title, heading, body}. The weights were obtained
by averaging across a 5-fold cross validation. First we optimized
Bf for each field independently. K1 was then optimized using Bf
from the previous step. Finally,Wbody = 1 was fixed, andWtitle and
Wheading were swept. The final parameter choices for ClueWeb09B
wereK1=1.02, title (Bf =0.36,Wf =9,2), body (Bf =0.32,Wf =2),
and heading (Bf = 0.16,Wf = 1). For SDMF, we used the config-
uration fromMohammad et al. [8]: the title, heading and body
weights were 0.2, 0.05 and 0.75, respectively. Both ordered and un-
ordered bigram features are only applied over the body field, each
of which has a weight of 0.1, whereas the unigram feature of body
has a 0.8 weight. Post-hoc spam filtering3 is applied to all runs with
a threshold of 50. Finally, we retain the top 1,000 documents for each
ranked list for evaluation. Note that this would affect direct MAP or
NDCG comparisons with previous TRECWeb Track runs as these
were scored over the top 10,000 documents.
Comparison Methodology. An initial list was retrieved using
query likelihood with Dirichlet smoothing and µ = 2500. For rel-
evance modeling, we adopted the reranking approach of Diaz [2]
who showed that reranking is as effective as retrieval over the entire
collection for RM3. As in Equation 4, P(q | f ,d)was used instead of
P(q |d) for relevancemodeling. Thus, the document list was reranked
by title, heading, and body query likelihood scores, and the top
50 scored fields were used for relevance modeling independently.
Before reranking, we clipped the relevancemodels for 25 or 50 terms
and re-normalized term weights. Then the 1,000 documents were
rerankedwith RM3overfields for the three resulting lists. Document
scores from the three ranked lists were then linearly combined to
produce the final ranking. A ten-fold cross validationwas performed
for tuning the relevance model clipping (number of terms) and RM3
query weights.

Figure 1: Experimental naming rules.

Naming followed the rules outlined in Figure 1.RMTST is a rel-
evance model induced from the titles of a rank list, and used to

3https://plg.uwaterloo.ca/ gvcormac/clueweb09spam/

Name MAP P@5 NDCG@20
BM25 0.196 0.359 0.234
BM25F 0.203 0.401† 0.256†
SDM 0.210 0.366 0.253
SDMF 0.200 0.398† 0.256
QL 0.196 0.347 0.238
QLLF 0.203 0.398† 0.256†
RM3 0.205 0.378 0.244
RMFLF 0.198 0.420† 0.257
RMDLF 0.197 0.420† 0.252

Table 1: Effectiveness of field-based retrieval methods. A pairwise,
two-tailed t-test was performed between a non-field model
(BM25,SDM,QL,RM3) and the corresponding extended field-based
model. A † denotes significance at p ≤ 0.05.

rerank the list by scoring the title field. A linear combination of
RMTST,RMHSH, andRMBSB is named asRMFLF. If we induce
relevancemodels from documents, and rerank documents by title,
we name it RMDST. Finally, the linear combination of scores of
RMDST,RMDSH, andRMDSB is calledRMDLF.
Field-based models for document retrieval. First we consider
the impact of field information on the retrieval effectiveness in Ta-
ble 1.Wecanobserve a consistent trend for all retrievalmethodswith-
out relevance modeling: field information improves early precision.
For P@5 and NDCG@20, statistically significant differences are ob-
served, with the exception of SDM and SDMF. Although slight MAP
improvements are observed in Table 1, the results are not significant.
Next, we consider the relevance modeling based methods: RM3,

RMFLF and RMDLF, which follow a similar trend as the methods
without relevance modeling: early precision benefits from incorpo-
rating field information, but the improvements are not statistically
significant for NDCG@20 or MAP. The early precision of the rele-
vance model approaches is also better than that of the baselines. In
general, the results shown inTable 1 suggest thatfields in documents
can provide new relevance signals to some extent, and integrating
the fields into existing retrieval models improves retrieval effective-
ness; but the improvements are somewhat volatile depending on
what is being measured.
Field-BasedRetrieval andRelevanceModelling. Finally, we ex-
plore if the field-based retrieval methods can be further improved
using relevancemodeling techniques. In order to gain a better under-
standing, we conducted experiments using two different settings: (a)
a PRF setting,where pseudo-relevance feedback documents are used;
and (b) an oracle setting, in which the first five relevant (by QREL)
documents from the initial list are used. As we showed in Table 1,
using a linearly combined field-based relevance models improves
early precision significantly, andwe further analyze the effectiveness
for each field independently now.

As described in Section 3,we induce relevancemodels using differ-
ent sources: (i) thefields themselves; and (ii) the entire document.We
consider themethods fromtheRMFLFandRMDLF family.The trends
for both categories are shown in Table 2(a). The body field is more
effective than either heading or title fields, the title is slightly



Field Wt MAP P@5 NDCG@20
RM3 - - 0.205 0.378 0.244

RMFLF
RMTST 0.1 0.122† 0.265† 0.151†
RMHSH 0.1 0.110† 0.246† 0.137†
RMBSB 0.8 0.189† 0.391 0.234
Linear - 0.198 0.420† 0.257

RMDLF
RMDST 0.2 0.130† 0.277† 0.159†
RMDSH 0.1 0.104† 0.248† 0.136†
RMDSB 0.7 0.187† 0.380 0.231†
Linear - 0.197 0.420† 0.252

(a) PRF settings

Field Wt MAP P@5 NDCG@20
RM3 - - 0.298 0.678 0.445

RMFLF

RMTST 0.2 0.256† 0.646 0.432
RMHSH 0.1 0.206† 0.618† 0.393†
RMBSB 0.7 0.277† 0.674 0.438
Linear - 0.293 0.732† 0.479†

RMDLF

RMDST 0.1 0.152† 0.296† 0.200†
RMDSH 0.1 0.126† 0.308† 0.174†
RMDSB 0.8 0.266† 0.640† 0.406†
Linear - 0.276† 0.656 0.417†

(b) Oracle settings
Table 2:Decomposition of field-based relevance modeling for both
(a) PRF and the (b) oracle settings. A pairwise, two-tailed t-test was
performed between each model and RM3. A † denotes significance
at p ≤ 0.05.

more effective than the heading field, and a linear combination of
all three methods provides the greatest effectiveness improvement.
When constructing relevance models based on the entire doc-

umentandapplying theconstructedmodel toscoreeachfield (RMDLF),
there are some differences from RMFLF, but the interpolated scores
(Linear) perform very similar, and not significantly different.

The effectiveness of using true relevant documents to construct
relevance models is shown in Table 2(b). This set of experiments
reveals the potential effectiveness gains we might achieve using
relevance modeling over fields. We observe that, if we apply a rele-
vance model induced from the entire document to each field, system
effectiveness is degraded. This confirms the observation made in
the PRF experiment. More importantly, RMFLF outperforms RMDLF
which suggests that inducing relevance models from fields instead
of documents is a promising approach that we do not yet understand
how to exploit. Experimental results of the oracle settings confirm
that applying relevance modeling techniques can significantly im-
prove the performance of field-based retrieval methods, particularly
for early precision metrics.
Per-Query Performance Breakdown. In order to better under-
stand the performance patterns, we performed a failure analysis for
RMFLF on a per query basis, as shown in Figure 2. In both instances
we can see that the two field based methods, RMTST and RMHSH,
improve performance on tail queries where RM3 and QL have low
NDCG@20 scores. When considering the PRF setting and the 25%
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Figure 2: Performance breakdown for RMFLF methods on a
per-query basis. The evaluation metric is NDCG@20 and all topics
are organized w.r.t. the RM3 methods. The “RM” means RM3, the
“H” means RMHSH and the “T” means RMTSTmethod.

worst-performing queries for RM3, 58% and 44% can be improved
by using RMTST and RMHSH, respectively. In an oracle setting, 44%
and 38% of queries among the worst 25% RM3 tail queries are im-
proved. However, none of the current field-based relevance models
are robust for all queries, and the performance can be worse than
either QL or non-field-based standard RM3.

5 CONCLUSIONS
In this paper, we first examined three techniques for using field in-
formation in semi-structured documents. They all outperform their
non-field counterparts in terms of early precision. We then incorpo-
ratedfield information into relevancemodeling, andobservedsimilar
trends – early precision is significantly improved. Our oracle experi-
ments suggest thatfields couldbean important sourceof information
thatmightbe furtherexploited in relevancemodeling.Themost inter-
esting finding is that difficult queries are improved using field-based
relevance modeling, which is a promising direction for future study.
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